Skip to main content
Log in

String Thermalization in Static Spacetimes

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the evolution, the transverse spreadingand the subsequent thermalization of string states inthe Weyl static axisymmetric spacetime. This possessesa singular event horizon on the symmetry axis and a naked singularity along the otherdirections. The branching diffusion process of stringbits approaching the singular black-hole horizonprovides the notion of the temperature that iscalculated for this process. We find that the solution of theFokker-Planck equation in the phase space of thetransverse variables of the string, can be factored asa product of two thermal distributions, provided that the classical conjugate variables satisfy theuncertainty principle. We comment on the possiblephysical significance of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Green, M., Schwarz, J., Witten, E. (1987). Superstring Theory (Cambridge University Press, Cambridge).

    Google Scholar 

  2. de Vega, H. J., and Sánchez, N. (1994). String Theory in Cosmological Spacetimes (Proc. Erice School, Sicily), N. Sanchez, ed. (World Scientific, Singapore).

    Google Scholar 

  3. de Vega, H. J. (1992). Strings in Curved Spacetimes (Proc. Erice School, Sicily), N. Sanchez, ed. (World Scientific, Singapore).

    Google Scholar 

  4. 't Hooft, G. (1990). Nucl. Phys. B 335, 138.

    Google Scholar 

  5. Susskind, L., Thorlacius, L., and Uglum, J. (1993). Phys. Rev. D 48, 3743.

    Google Scholar 

  6. Susskind, L. (1993). Phys. Rev. Lett. 71, 2367.

    Google Scholar 

  7. Susskind, L., and Uglum, J. (1994). Phys. Rev. D 50, 2700.

    Google Scholar 

  8. Mezhlumian, A., Peet, A., and Thorlacius, L. (1994). Phys. Rev. D 50, 2725.

    Google Scholar 

  9. Hotta, K. (1998). “The Information Loss Problem of Black Hole and the First Order Phase Transition in String Theory.” Preprint hep-th/9705100

  10. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation (W. H. Freeman, San Francisco).

    Google Scholar 

  11. Duncan, C., Paul Esposito, F., and Lee, S. (1978). Phys. Rev. D 17, 404.

    Google Scholar 

  12. Papadopoulos, D., Stewart, B., and Witten, L. (1981). Phys. Rev. D 24, 320.

    Google Scholar 

  13. Papadopoulos, D. (1985). Lett. Nuovo Cimento 44, 497.

    Google Scholar 

  14. Bičak, J., Lynden-Bell, D., and Katz, J. (1993). Phys. Rev. D 47, 4334.

    Google Scholar 

  15. Lemos, J. P. S. (1988). Mon. Not. R. Astr. Soc. 230, 451.

    Google Scholar 

  16. Horowitz, G. T., and Ross, S. F. (1997). “Properties of Naked Black Holes.” Preprint hep-th/9709050.

  17. Abramowitz, M., and Stegun, I. A. (1970). Handbook of Mathematical Functions (Dover, New York).

  18. Nicholson, D. R. (1983). Introduction to Plasma Theory (Wiley, New York).

    Google Scholar 

  19. Namiki, M. (1992). Stochastic Quantization (Lecture Notes in Physics 119, Springer-Verlag, New York).

    Google Scholar 

  20. Witten, E. (1985). Nucl. Phys. B 249, 557.

    Google Scholar 

  21. Miyoshi, M., et al. (1995). Nature 373, 127.

    Google Scholar 

  22. Greenhill, L. J., et al. (1995). Astrophys. J. 440, 619.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuiroukidis, A., Papadopoulos, D.B. & Paschalis, J.E. String Thermalization in Static Spacetimes. General Relativity and Gravitation 31, 1237–1254 (1999). https://doi.org/10.1023/A:1026716622648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026716622648

Navigation