International Journal of Theoretical Physics

, Volume 37, Issue 3, pp 995–1009 | Cite as

Second Quantization of the Dirac Field: Normal Modes in the Robertson–Walker Space-Time

  • Emilio Montaldi
  • Antonio Zecca

Abstract

The quantization of the Dirac field in thecontext of the Robertson–Walker spacetime isreconsidered in some of its constitutive elements. Theparticular solutions of the Dirac equation previouslydetermined are used to construct the normal mode solutionsin the case of flat, closed, and open space-time. Theprocedure is based on a general standard definition ofinner product between solutions of the Dirac equation that is applied by making use of anintegral property of the separated time equation. Theopen-space case requires the recurrence relations offunctions associated to solutions of the Diracequation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abramovitz, W., and Stegun I. E. (1970). Handbook of Mathematical Functions, Dover, New York.Google Scholar
  2. Arfken G. B., and Weber, H. J. (1995). Mathematical Methods for Physicists, Academic Press, San Diego, California.Google Scholar
  3. Bander, M., and Itzykson, C. (1966). Reviews of Modern Physics, 38, 346.Google Scholar
  4. Birrell, N. D., and Davies, P. C. W. (1982). Quantum Fields in Curved Space-Time, Cambridge University Press, Cambridge.Google Scholar
  5. Buchdahl, H. A. (1962). Nuovo Cimento, 25, 486.Google Scholar
  6. Chandrasekhar, S. (1983). The Mathematical Theory of Black Holes, Oxford University Press, Oxford.Google Scholar
  7. Dolginov, A. Z., and Toptygin, I. N. (1960). Soviet Physics JETP, 37, 1022.Google Scholar
  8. Ford, L. H. (1976). Physical Review D, 14, 3304.Google Scholar
  9. Fulling, S. A. (1973). Physical Review D, 7, 2850.Google Scholar
  10. Fulling, S. A. (1989). Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press, Cambridge.Google Scholar
  11. Hawking, S.W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space Time, Cambridge University Press, Cambridge.Google Scholar
  12. Hu, B. L. (1974). Physical Review D, 9, 3263.Google Scholar
  13. Illge, R. (1993). Communications in Mathematical Physics, 158, 433.Google Scholar
  14. Kolb, E. W., and Turner, M. S. (1990). The Early Universe, Addison-Wesley, New York.Google Scholar
  15. Montaldi, E. and Zecca, A. (1994). International Journal of Theoretical Physics, 33, 1053.Google Scholar
  16. Newman, E. T., and Penrose, R. (1962). Journal of Mathematical Physics, 3, 566.Google Scholar
  17. Parker, L. (1969). Physical Review D, 183, 1057.Google Scholar
  18. Parker, L. (1971). Physical Review D, 3, 346.Google Scholar
  19. Parker, L., and Fulling, S. A. (1974). Physical Review D, 9, 341.Google Scholar
  20. Penrose, R., and Rindler, W. (1990). Spinors and Space-Time, Cambridge University Press, Cambridge.Google Scholar
  21. Unruh, W. G. (1974). Physical Review D, 10, 3194.Google Scholar
  22. Wünsch, V. (1978). Beiträge zur Analysis, 12, 47.Google Scholar
  23. Wünsch, V. (1979). Beiträge zur Analysis 13, 147.Google Scholar
  24. Zecca, A. (1996). Journal of Mathematical Physics, 37, 874.Google Scholar
  25. Zecca, A. (1997). International Journal of Theoretical Physics, 36, 1413.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Emilio Montaldi
  • Antonio Zecca

There are no affiliations available

Personalised recommendations