Kinetics and Catalysis

, Volume 41, Issue 6, pp 816–825 | Cite as

Zirconium-Containing Compositions with a Component Ratio Characteristic of the Garnet Structure: Physicochemical and Catalytic Properties

  • A. S. Ivanova
  • M. V. Mikhan'
  • G. M. Alikina
  • G. S. Litvak
  • E. M. Moroz
  • E. B. Burgina


The possibility for the formation of garnet structures in the Mn–Fe–Zr–O and Ca–Sm–Zr–O systems obtained by the precipitation of the corresponding salts is studied. It is shown that, in the Mn–Fe–Zr–O system, garnet is crystallized at 860–920°C, for which probable cation distribution is estimated to be {Zr2.54+Mn0.52+}[Mn22+](Fe2.53+Mn0.53+)O12. In the Ca–Sm–Zr–O system, the perovskite CaZrO3, pyrochlore Sm2Zr2O7, and CaO are formed at 900–1200°C, but compounds with garnet structures are not found. The reported systems are characterized by surface areas of 300–450 m2/g at ≤450°C, and they have the polydisperse distribution of pores over sizes. The introduction of surfactants at the stage of component mixing enables an increase in the overall pore volume and mechanical strength of these systems. The Mn–Fe–Zr and Ca–Sm–Zr compositions are active catalysts for the complete oxidation of hydrocarbons.


Oxidation Precipitation Physical Chemistry Surfactant Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuzmicheva, G.M., Mukhin, B.V., Khomutova, E.G., et al., Neorg. Mater., 1993, vol. 29, no. 1, p. 89.Google Scholar
  2. 2.
    Beltran, A., Andres, J., Igualada J.A., and Carda, J., J. Phys. Chem., 1995, vol. 99, no. 17, p. 6493.Google Scholar
  3. 3.
    Chalyi, V.P., Makarova, Z.Ya., and Khomenko, I.V., Ukr. Khim. Zh., 1978, vol. 44, no. 9, p. 904.Google Scholar
  4. 4.
    Price, W.J., Analytical Atomic-Absorption Spectroscopy, New York: Heyden and Son, 1976.Google Scholar
  5. 5.
    Umanskii, Ya.S., Rentgenografiya metallov (X-ray Analysis of Metals), Moscow: Metallurgizdat, 1960, p. 273.Google Scholar
  6. 6.
    Buyanova, N.Ya., Karnaukhov, A.P., and Alabuzhev, Yu.A., Opredelenie poverkhnosti dispersnykh i poristykh materialov (Surface Measurements of Disperse and Porous Materials), Novosibirsk: Inst. of Catalysis, 1978.Google Scholar
  7. 7.
    Zinov'ev, C.Yu. and Krzhizhanovskaya, V.A., in Khimiya i tekhnologiya silikatnykh i tugoplavkikh nemetallicheskikh materialov (Chemistry and Technology of Silicate and Refractory Materials), Leningrad: Nauka, 1989, p. 67.Google Scholar
  8. 8.
    Mezin, N.I., Kuznetsov, E.N., and Starostyuk, N.D., Neorg. Mater., 1989, vol. 25, no. 7, p. 1187.Google Scholar
  9. 9.
    Chalyi, V.P., Lukachina, E.N., and Simonovich, L.M., Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1974, vol. 10, no. 1, p. 2028.Google Scholar
  10. 10.
    Dzis'ko, V.A. and Karnaukhov, A.P., Fizikokhimicheskie osnovy sinteza okisnykh katalizatorov (Physicochemical Foundations of Oxide Catalyst Preparation), Novosibirsk: Nauka, 1978.Google Scholar
  11. 11.
    Tret'yakov, Yu.D., Termodinamika ferritov (Thermodynamics of Ferrites), Moscow: Khimiya, 1967.Google Scholar
  12. 12.
    Gavrish, A.M., Gul'ko, N.V., and Tarasova, L.A., Zh. Neorg. Khim., 1981, vol. 26, no. 12, p. 3329.Google Scholar
  13. 13.
    Ivanova, A.S., Moroz, E.M., Litvak, G.S., and Okkel', L.G., Neorg. Mater., 1998, vol. 34, no. 4, p. 432.Google Scholar
  14. 14.
    Ivanova, A.S., Moroz, E.M., and Litvak, G.S., React. Kinet. Catal. Lett., 1998, vol. 65, no. 1, p. 169.Google Scholar
  15. 15.
    ASTM Diffraction Data Cards and Alphabetical and Grouped Numerical Index of X-ray Diffraction Data, Philadelphia: ASTM, 1967.Google Scholar
  16. 16.
    Glushkova, V.B. and Keler, E.K., in Khimiya i tekhnologiya silikatnykh i tugoplavkikh nemetallicheskikh materialov (Chemistry and Technology of Silicate and Refractory Materials), Leningrad: Nauka, 1989, p. 41.Google Scholar
  17. 17.
    Apte, P., Burke, H., and Pickup, H., J. Mater. Res., 1992, vol. 7, no. 3, p. 706.Google Scholar
  18. 18.
    Ivanova, A.S., Doctoral (Chem.) Dissertation, Novosibirsk: Inst. of Catalysis, 1996, p. 364.Google Scholar
  19. 19.
    Brown, M.E., Dollimore, D., and Galwey, A.K., Comprehensive Chemical Kinetics, Amsterdam: Elsevier, 1980, p. 196.Google Scholar
  20. 20.
    Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Ithaca: Cornell University Press, 1945.Google Scholar
  21. 21.
    Reznitskii, L.A., Neorg. Mater., 1993, vol. 29, no. 3, p. 386.Google Scholar
  22. 22.
    Reznitskii, L.A., Zh. Fiz. Khim., 1993, vol. 67, no. 12, p. 2379.Google Scholar
  23. 23.
    Reznitskii, L.A., Zh. Fiz. Khim., 1987, vol. 61, no. 1, p. 239.Google Scholar
  24. 24.
    Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1986, p. 195.Google Scholar
  25. 25.
    Popovskii, V.V., Sazonov, V.A., Chermoshentseva, G.K., et al., Mater. III Vsesoyuz. konfer.Kataliticheskaya ochistka otkhodyashchikh gazov promyshlennykh predpriyatii i vykhlopnykh gazov avtotransporta” (Proc. of III All-Union Conf. on Cleaning of Exhaust Gases from Industrial Enterprises and Cars), Novosibirsk: Inst. of Catalysis, 1981, ch. 1, p. 80.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. S. Ivanova
    • 1
  • M. V. Mikhan'
    • 1
  • G. M. Alikina
    • 1
  • G. S. Litvak
    • 1
  • E. M. Moroz
    • 1
  • E. B. Burgina
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations