International Journal of Theoretical Physics

, Volume 38, Issue 2, pp 585–598 | Cite as

Klein–Gordon and Dirac Equations in de Sitter Space–Time

  • E. A. Notte Cuello
  • E. Capelas De Oliveira
Article

Abstract

We present and discuss the Klein–Gordonand Dirac wave equations in the de Sitter universe. Toobtain the Dirac wave equation we use the factorizationof the second-order invariant Casimir operatorassociated to the Fantappie–de Sitter group. Boththe Klein–Gordon and Dirac wave equations arediscussed in terms of the spherical harmonics with spinweight. A particular case of Dirac wave equation issolved in terms of a new class of polynomials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. A. Notte Cuello and E. Capelas de Oliveira, Hadron. J. 18 (1995), 181.Google Scholar
  2. 2.
    G. Arcidiacono, E. Capelas de Oliveira, and E. A. Notte Cuello, Hadron. J. Suppl. 10 (1995), 281; E. Capelas de Oliveira and E. A. Notte Cuello, Klein-Gordon wave equation in the de Sitter universe, Hadron. J., to appear.Google Scholar
  3. 3.
    G. Arcidiacono, Projective Relativity, Cosmology and Gravitation, Hadronic Press, Nonantum, Massachusetts (1986); Relativitàe Cosmologia, Veschi, Rome (1987).Google Scholar
  4. 4.
    E. Capelas de Oliveira, J. Math. Phys. 33 (1992), 3757.Google Scholar
  5. 5.
    E. A. Notte Cuello and E. Capelas de Oliveira, Int. J. Theor. Phys. 36 (1997), 1231.Google Scholar
  6. 6.
    E. T. Newman and R. Penrose, J. Math. Phys. 7 (1966), 863.Google Scholar
  7. 7.
    G. F. Torres del Castillo, Rev. Mex. Fis. 36 (1990), 446.Google Scholar
  8. 8.
    D. Gomes and E. Capelas de Oliveira, On a new class of polynomials, Algebras Groups Geometries, to appear.Google Scholar
  9. 9.
    D. Gomes and E. Capelas de Oliveira, Algebras, Groups Geometries 14 (1997), 49.Google Scholar
  10. 10.
    B. Nagel, J. Math. Phys. 35 (1994), 1549.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • E. A. Notte Cuello
  • E. Capelas De Oliveira

There are no affiliations available

Personalised recommendations