Skip to main content
Log in

A metalimnetic oxygen minimum indirectly contributing to the low biomass of cladocerans in Lake Hiidenvesi – a diurnal study on the refuge effect

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The diurnal vertical migrations of smelt (Osmerus eperlanus), larvae of phantom midge (Chaoborus flavicans) and cladoceran zooplankton in eutrophic Lake Hiidenvesi were studied in order to clarify the factors behind the low zooplankton biomass. In the study area, an oxygen minimum occurred in the metalimnion in the 10–15 m depth. No diurnal fluctuations in the position of the minimum were observed. Cladocerans inhabited the epilimnion throughout the study period and their vertical movements were restricted to above the thermocline and above the oxygen minimum. C. flavicansconducted a diurnal migration. During the day, the majority of the population inhabited the 12 – 15 m depth just in the oxygen minimum, while during darkness they were found in the uppermost 8 m. Smelts started ascending towards the water surface before sunset and reached the uppermost 3 m around 23:00. During daytime, the majority of smelts inhabited the depth of 7–9 m, where the water temperature was unfavourably high for them (18 °C). Smelts thus probably avoided the steep oxygen gradient in the metalimnion, whereas Chaoborusused the oxygen minimum as a refuge against predation. Those smelts that were found in the same water layers as Chaoborusused the larvae as their main prey. The metalimnetic oxygen minimum thus seemed to favour the coexistence of vertebrate and invertebrate predators, leading to a depression of cladoceran zooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsterberg, G., 1927. Die Sauerstoffschichtung der Seen. Bot. Notiser 1927: 255-274.

    Google Scholar 

  • Aku, P. M. K., L. G. Rudstam & W. M. Tonn, 1997. Impact of hypolimnetic oxygenation on the vertical distribution of cisco (Coregonus artedi) in Amisk Lake, Alberta. Can. J. Fish. aquat. Sci. 54: 2182-2195.

    Google Scholar 

  • Benndorf, J., 1995. Possibilities and limits for controlling eutrophication by biomanipulation. Int. Rev. ges. Hydrobiol. 80: 519-534.

    Google Scholar 

  • Birge, E. A. & C. Juday, 1911. The inland lakes of Wisconsin. The dissolved gases of the water and their ecological significance. Wisc. Geol. Nat. Hist. Surv. Bull. 22: 1-1259.

    Google Scholar 

  • Burczynski, J. J., P. H. Michaletz & G. M. Marrone, 1987. Hydroacoustic assessment of the abundance and distribution of rainbow smelt in Lake Oahe. N. am. J. Fish. Mgmt 7: 106-116.

    Google Scholar 

  • Calaban, M. J. & J. C. Makarewicz, 1982. The effect of temperature and density on the amplitude of vertical migration of Daphnia magna. Limnol. Oceanogr. 27: 262-271.

    Google Scholar 

  • Dembinski, W., 1971. Vertical distribution of vendace Coregonus albulaL. and many other fish species in some Polish lakes. J. Fish Biol. 3: 341-357.

    Google Scholar 

  • Dini, M. L. & S. R. Carpenter, 1988. Variability in Daphnia behaviorfollowing fish community manipulations. J. Plankton Res. 10: 621-635.

    Google Scholar 

  • Dodson, S., 1990. Predicting diel vertical migration of zooplankton. Limnol. Oceanogr. 35: 1195-1200.

    Google Scholar 

  • Eckmann, R., 1998. Allocation of echo integrator output to small larval insect (Chaoborussp.) and medium-sized (juvenile fish) targets. Fish. Res. 35: 107-113.

    Google Scholar 

  • Edler, L., 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Mar. Biol. Publ. 5: 138.

    Google Scholar 

  • Eie, J. A. & R. Borgstrøm, 1981. Distribution and food of roach (Rutilus rutilus(L.)) and perch (Perca fluviatilisL.) in the eutrophic lake Årungen, Norway. Verh. int. Ver. Limnol. 21: 1257-1263.

    Google Scholar 

  • Fedorenko, A. Y., 1975. Instar and species-specific diets in two species of Chaoborus. Limnol. Oceanogr. 20: 238-249.

    Google Scholar 

  • Gliwicz, Z. M. & A. Jachner, 1992. Diel migrations of juvenile fish: a ghost of predation, past or present. Arch. Hydrobiol. 124: 385-410.

    Google Scholar 

  • Hakkari, L., 1978. On the productivity and ecology of zooplankton and its role as food for fish in some lakes in Central Finland. Biol. Res. Rep. Univ. Jyväskylä 4: 1-87.

    Google Scholar 

  • Hanazato, T., 1992. Direct and indirect effects of low oxygen layers on lake zooplankton communities. Ergebn. Limnol. 35: 87-98.

    Google Scholar 

  • Heist, B. G. & W. A. Swenson, 1983. Distribution and abundance of rainbow smelt in western Lake Superior as determined from acoustic sampling. J. Great Lakes Res. 9: 343-353.

    Google Scholar 

  • Irvine, K., 1997. Food selectivity and diel vertical distribution Chaoborus edulis(Diptera, Chaoboridae) in Lake Malawi. Freshwat. Biol. 37: 605-620.

    Google Scholar 

  • Lair, N., 1990. Effects of invertebrate predation on the seasonal succession of a zooplankton community: a 2-year study in Lake Aydat, France. Hydrobiologia 198: 1-12.

    Google Scholar 

  • Lampert, W., 1993. Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator-avoidance hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79-88.

    Google Scholar 

  • Luecke, C., 1986. A change in the pattern of vertical migration of Chaoborus flavicansafter the introduction of trout. J. Plankton Res. 8: 649-657.

    Google Scholar 

  • Luokkanen, E., 1995. Vesikirppuyhteisön lajisto, biomassa ja tuotanto Vesijärven Enonselällä. Helsingin yliopiston Lahden tutkimus-ja koulutuskeskuksen raportteja ja selvityksiä 25. 1-53 (in Finnish with English summary).

    Google Scholar 

  • Malueg, K. W. & A. D. Hasler, 1966. Echo sounder studies on diel vertical movements of Chaoboruslarvae in Wisconsin (U.S.A.) lakes. Verh. int. Ver. Limnol. 16: 1697-1708.

    Google Scholar 

  • McNaught, D. & A. D. Hasler, 1964. Rate of movement of populations of Daphniain relation to changes in light intensity. J. Fish. Res. Bd Canada 21: 291-318.

    Google Scholar 

  • Minder, L., 1923. Studien uber den Sauerstoffgehalt des Zurichsees. Arch. Hydrobiol. (suppl.) 3: 107-155.

    Google Scholar 

  • Moeller, H. & U. Scholz, 1991. Avoidance of oxygen-poor zones by fish in the Elbe River. J. Appl. Ichthyol. 7: 176-182.

    Google Scholar 

  • Nellbring, S., 1989. The ecology of smelts (genus Osmerus): a literature review. Nordic J. Freshwat. Res. 65: 116-145.

    Google Scholar 

  • Ohle, W., 1958. Die Stoffwechseldynamic der Seen in Abhängigkeit von der Gasausscheidung ihre Schlammes. Vom Vasser 25: 127-149.

    Google Scholar 

  • Parma, S., 1971. Chaoborus flavicans(Meigen) (Diptera, Chaoboridae). An autecological study. Doctoral Disseration, University of Groningen.

  • Prepas, E. & F. H. Rigler, 1978. The enigma of Daphniadeath rates. Limnol. Oceanogr. 23: 970-988.

    Google Scholar 

  • Ringelberg, J., B. J. G. Flik, D. Lindenaar & K. Royackes, 1991. Diel vertical migrations of Daphnia hyalina(sensu latiori) in lake Maarsseveen: Part I. Aspects of seasonal and daily timing. Arch. Hydrobiol. 121: 129-145.

    Google Scholar 

  • Sardella, L. C. & J. C. H. Carter, 1983. Factors contributing to coexistence ofChaoborus flavicansand C. punctipennisin a small meromictic lake. Hydrobiologia 107: 155-164.

    Google Scholar 

  • Sarvala, J., H. Helminen, V. Saarikari, S. Salonen & K. Vuorio, 1998. Relations between planktivorous fish abundance, zooplankton and phytoplankton in three lakes of differing productivity. Hydrobiologia 363: 81-95.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall. London: 357 pp.

    Google Scholar 

  • Schram, M. D. & G. R. Marzolf, 1994. Metalimnetic oxygen depletion: Organic carbon flux and crustacean zooplankton distribution in a quarry embayment. Trans. am. microsc. Soc. 113: 105-116.

    Google Scholar 

  • Shapiro, J., 1960. The cause of a metalimnetic minimum of dissolved oxygen. Limnol. Oceanogr. 5: 216-227.

    Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase making it stable. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 13-27.

    Google Scholar 

  • Stenson, J. A. E., 1990. Creating conditions for changes in prey community structure by Chaoborusspp. in a lake in Sweden. Hydrobiologia 198 (Dev. Hydrobiol. 60): 205-214.

    Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration. Nature 293: 396-398.

    Google Scholar 

  • Taleb, H., N. Lair, P. Reyes-Marchant & J.-L. Jamet, 1993. Observations on vertical migrations of zooplankton at four different stations of a small, eutrophic temperate zone lake, in relation to their predators. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 199-216.

    Google Scholar 

  • Tallberg, P., J. Horppila, A. Väisänen & L. Nurminen, 1999. Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake-implications for food web management. Hydrobiologia 412: 81-94.

    Google Scholar 

  • Thienemann, A., 1928. Der Sauerstoff im eutrophen und oligotrophen See. Ein Betrag zur Seetypenlehre. Die Binnengewässer, Band IV: 1-175.

    Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472-486.

    Google Scholar 

  • Utermöhl, H., 1958, Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt. Int. Ver. Limnol. 9: 1-38.

    Google Scholar 

  • Vanni, M. J., 1988. Freshwater zooplankton community structure: introduction of large invertebrate predators and large herbivores to a small-species community. Can. J. Fish. aquat. Sci. 45: 1758-1770.

    Google Scholar 

  • Vinni, M., J. Horppila, M. Olin, J. Ruuhijärvi & K. Nyberg, 2000. The food, growth and abundance of five co-existing cyprinids in lake basins of different morphometry and water quality. Aquat. Ecol. (submitted).

  • Wetzel, R., 1983. Limnology. 2nd edn. Saunders College Publishing. Philadelphia, PA: 767 pp.

    Google Scholar 

  • Windell, J. T., 1971. Food analysis and rate of digestion. In Ricker, W. E. (ed.), Methods for Assessment of Fish Production in Fresh Waters. IPB Handbook 3. Blackwell, Oxford: 215-226.

    Google Scholar 

  • Wissel, B. & J. Benndorf, 1998. Contrasting effects of the invertebrate predator Chaoborus obscuripesand planktivorous fish on plankton communities of a long term biomanipulation experiment. Arch. Hydrobiol. 143: 129-146.

    Google Scholar 

  • Wright, D. & J. Shapiro, 1990. Refuge availability: a key to understanding the summer disappearance of Daphnia. Freshwat. Biol. 24: 43-62.

    Google Scholar 

  • Zaret, T., 1975. Strategies for existence of zooplankton prey in homogenous environments. Verh. int. Ver. Limnol. 19: 1484-1489.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horppila, J., Malinen, T., Nurminen, L. et al. A metalimnetic oxygen minimum indirectly contributing to the low biomass of cladocerans in Lake Hiidenvesi – a diurnal study on the refuge effect. Hydrobiologia 436, 81–90 (2000). https://doi.org/10.1023/A:1026594006856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026594006856

Navigation