Skip to main content
Log in

Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: A review

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Phosphatase activity of arbuscular mycorrhizal (AM) fungi has attracted attention in three fairly distinct domains: intracellular enzymes with defined metabolic functions that have been studied in intraradical hyphae, histochemical staining of alkaline phosphatase as an indicator of fungal activity measured both intra- and extraradically, and extracellular activity related to mineralization of organic P (Po) compounds that may enhance mycorrhizal utilization of an important nutrient pool in soil. This review focuses on the latter subjects with emphasis on extraradical mycelium (ERM), while it draws on selected data from the vast material available concerning phosphatases of other organisms. We conclude that histochemical staining of alkaline phosphatase is a sensitive and suitable method for monitoring the effect of adverse conditions encountered by ERM both as a symbiotically functional entity in soil, and in vitro without modifying interference of soil or other solid substrates. Furthermore, the quantitative importance of extracellular enzymes for P nutrition of AM plants is estimated to be insignificant. This is concluded from the low quantitative contribution extracellular hyphae of AM fungi give to the total phosphatase activity in soil, and from estimations of which processes that may be rate limiting in organic P mineralization. Maximum values for the former is in the order of a few percent. As for the latter, solubilization of Po seems to be far more important than Po hydrolysis for utilization of Po by AM fungi and plants, as both endogenous soil phosphatase activity and phosphatases of other soil organisms are ubiquitous and abundant. Our discussion of mycorrhizal phosphatases supports the view that extracellular phosphatases of roots and micro-organisms are to a large extent released incidentally into soil, and that the source has limited benefit from its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-Alla M H 1994 Use of organic phosphorus by Rhizobium leguminosarum biovar viceae phosphatases. Biol. Fertil. Soils 18, 216–218.

    Article  CAS  Google Scholar 

  • Anderson G 1967 Nucleic acids, derivatives and organic phosphates. In Soil Biochemistry. vol 1. Eds. AD McLaren and GH Peterson. pp 67–90. Marcel Dekker Inc., New York.

    Google Scholar 

  • Anderson G 1980 Assessing organic phosphorus in soil. In The Role of Phosphorus in Agriculture. Eds. F Khasawneh, E Sample and E Kamprath. pp 411–431. Am. Soc. Agron., Madison.

    Google Scholar 

  • Antibus R K, Kroehler C J and Linkins A E 1986 The effects of external pH, temperature and substrate concentration on acid phosphatase activity of ectomycorrhizal fungi. Can. J. Bot. 64, 2383–2387.

    Article  CAS  Google Scholar 

  • Antibus R K, Bower D and Dighton J 1997 Root surface phosphatase activities and uptake of P-32-labelled inositol phosphate in field-collected gray birch and red maple roots. Mycorrhiza 7, 39–46.

    Article  CAS  Google Scholar 

  • Attia A F and Jeanjean R 1983 Influence of osmotic shock and of plasmolysis on phosphate uptake by excised corn roots. Physiol. Vég. 21, 39–47.

    CAS  Google Scholar 

  • Azcon R, Borie F and Barea J M 1982 Exocellular phosphatase activity of lavender and wheat roots as affected by phytate and mycorrhizal inoculation. In LesMycorrhizes: Biologie et Utilisation. Eds. S Gianinazzi, V Gianinazzi-Pearson and A Trouvelot. Les Colloques de l'INRA, vol 13. pp 83–85. INRA, Dijon.

    Google Scholar 

  • Bae K-S and Barton L L 1989 Alkaline phosphatase and other hydrolases produced by Cenococcum graniforme, an ectomycorrhizal fungus. Appl. Environ. Microbiol. 55, 2511–2516.

    PubMed  CAS  Google Scholar 

  • Baláz M and Vosatka M 1997 Vesicular-arbuscular mycorrhiza of Calamagrostis villosa supplied with organic and inorganic phosphorus. Biol. Plant. 39, 281–288.

    Article  Google Scholar 

  • Barrett-Lennard E G, Dracup M and Greenway H 1993 Role of extracellular phosphatases in the phosphorus-nutrition of clover. J. Exp. Bot. 44, 1595–1600.

    CAS  Google Scholar 

  • Beck E, Fusseder A and Kraus M 1989 The maize roots system in situ: Evaluation of structure and capability of utilization of phytate and inorganic soil phosphates. Z. Pflanzenernähr. Bodenk. 152, 159–167.

    CAS  Google Scholar 

  • Boddington C L and Dodd J C 1998 A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8, 149–157.

    Article  CAS  Google Scholar 

  • Boddington C L and Dodd J C 1999 Evidence that difference in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies. New Phytol. 142, 531–538.

    Article  Google Scholar 

  • Bolan N S 1991 A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134, 189–207.

    Article  CAS  Google Scholar 

  • Brady N C 1990 The nature and properties of soils. Macmillan Publishing Company, New York. 621 p.

    Google Scholar 

  • Burns R G 1982 Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biol. Biochem. 14, 423–427.

    Article  CAS  Google Scholar 

  • Cade-Menun B J and Berch S M 1997 Response of mycorrhizal western red cedar to organic phosphorus sources and benomyl. Can. J. Bot. 75, 1226–1235.

    CAS  Google Scholar 

  • Calleja M and D'Auzac J 1983 Activités phosphatases et carence phosphatée chez des champignons supérieurs. Can. J. Bot. 61, 79–86.

    CAS  Google Scholar 

  • Camprubi A, Calvet C and Estaùn V 1995 Growth enhancement of Citrus reshni after inoculation with Glomus intraradices and Trichoderma aureoviride and associated effects on microbial populations and enzyme activity in potting mixes. Plant Soil 173, 233–238.

    Article  CAS  Google Scholar 

  • Cosgrove D J 1967 Metabolism of organic phosphates in soil. In Soil Biochemistry. vol 1. Eds. A Mclaren and G Peterson. pp 216–228. Dekker, New York.

    Google Scholar 

  • Cosgrove D J 1977 Microbial transformations in the phosphorus cycle. In Advances in Microbial Ecology. vol 1. Ed. M Alexander. pp 95–134. Plenum press, New York.

    Google Scholar 

  • Dalal R C 1977 Soil organic phosphorus. In Advances in Agronomy. vol. 29. Ed. NC Brady. pp 83–117. Academic Press, New York.

    Google Scholar 

  • Dick W A, Juma N G and Tabatabai M A 1983 Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Sci. 136, 19–25.

    CAS  Google Scholar 

  • Dighton J 1983 Phosphatase production by mycorrhizal fungi. Plant Soil 71, 455–462.

    Article  CAS  Google Scholar 

  • Dighton J 1995 Nutrient cycling in different terrestrial ecosystems in relation to fungi. Can. J. Bot. 73, 1349–1360.

    Google Scholar 

  • Dodd J C 1994 Approaches to the study of the extraradical mycelium of arbuscular mycorrhizal fungi. In Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Eds. S Gianinazzi and H Schüepp. pp 147–166. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Dodd J C, Burton C C, Burns R G and Jeffries P J 1987 Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 107, 163–172.

    Article  CAS  Google Scholar 

  • Duff S M G, Sarath G and Plaxton W C 1994 The role of acid phosphatases in plant phosphorus metabolism. Physiol. Plant. 90, 791–800.

    Article  CAS  Google Scholar 

  • Ezawa T, Kuwahara S, Sakamoto K, Yoshida T and Saito M 1999 Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycologia 91, 636–641.

    CAS  Google Scholar 

  • Ezawa T, Saito M and Yoshida T 1995 Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant Soil 176, 57–63.

    Article  CAS  Google Scholar 

  • Findenegg G R and Nelemans J A 1993 The effect of phytase on the availability of P from myo-inositol hexaphosphate (phytate) for maize roots. Plant Soil 154, 189–196.

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V and Dexheimer J 1979 Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural location of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.). New Phytol. 82, 127–132.

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V and Gianinazzi S 1978 Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. II. Soluble alkaline phosphatase specific to mycorrhizal infection in onion roots. Physiol. Plant Path. 12, 45–53.

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V and Gianinazzi S 1995 Protein and protein activities in endomycorrhizal symbiosis. In Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. Eds. B Hock and A Varma. pp 251–266. Springer Verlag, Heidelberg.

    Google Scholar 

  • Graham J H, Leonard R T and Menge J A 1981 Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol. 68, 549–552.

    Google Scholar 

  • Gressel N, Mccoll J G, Preston CM, Newman R H and Powers R F 1996 Linkages between phosphorus transformations and carbon decomposition in a forest soil. Biogeochemistry 33, 97–123.

    Article  Google Scholar 

  • Gryndler M, Hrselova H, Chvatalova I and Vosatka M 1998 In vitro proliferation of Glomus fistulosum intraradical hyphae from mycorrhizal root segments of maize. Mycol. Res. 102, 1067–1073.

    Article  CAS  Google Scholar 

  • Gryndler M and Vosatka M 1996a Effect of bacteria and organic matter of bacterial origin on the arbuscular mycorrhiza of Glomus fasciculatum. In Proceedings of the 4th European Symposium on Mycorrhizas. Eds. C Azcon-Aguilar and J M Barea. pp 638–641. EC-EAEC, Granada.

    Google Scholar 

  • Gryndler M and Vosatka M 1996b Response of arbuscular mycorrhizal fungus Glomus fistulosum to treatments with culture fractions from Pseudomonas putida. Mycorrhiza 6, 207–211.

    Article  Google Scholar 

  • Guillemin J P, Orozco M O, Gianinazzi-Pearson V and Gianinazzi S 1995 Influence of phosphate fertilization on fungal alkaline phosphatase and succinate dehydrogenase activities in arbuscular mycorrhiza of soybean and pineapple. Agr. Ecosyst. Environ. 53, 63–69.

    Article  CAS  Google Scholar 

  • Halstead R L and McKercher R B 1975 Biochemistry and cycling of phosphorus. In Soil Biochemistry, vol 4. Eds. E A Paul and A D McLaren. pp 31–63. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Hamel C, Fyles H and Smith D L 1990 Measurement of development of endomycorrhizal mycelium using three different vital stains. New Phytol. 115, 297–302.

    Article  Google Scholar 

  • Harrison M J and Van Buuren M L 1995 A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629.

    Article  PubMed  CAS  Google Scholar 

  • Hedley MJ, Kirk G J D and Santos MB 1994 Phosphorus efficiency and the forms of soil phosphorus utilized by upland rice cultivars. Plant Soil 158, 53–62.

    Article  CAS  Google Scholar 

  • Hedley M J, Stewart J W B and Chauhan B S 1982 Changes in inorganic and organic soil phosphorus fractions induced by cultivation and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970–976.

    Article  CAS  Google Scholar 

  • Jackman R H and Black C A 1951 Solubility of iron, aluminium, calcium and magnesium inositol phosphates at different pH values. Soil Sci. 72, 179–186.

    Article  CAS  Google Scholar 

  • Janos D P 1983 Tropical mycorrhizas, nutrient cycles and plant growth. In Tropical Rain Forest: Ecology and Management. Eds. S L Sutton, T C Whitmore and A C Chadwick. pp 327–345. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Jayachandran K, Schwab A P and Hetrick B A D 1992 Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 24, 897–903.

    Article  CAS  Google Scholar 

  • Jennings D H 1995 The physiology of fungal nutrition. Cambridge University Press, Cambridge. 622 p.

    Google Scholar 

  • Johansen A, Finlay R D and Olsson P A 1996 Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705–712.

    Article  CAS  Google Scholar 

  • Johnston M and Carlson M 1992 Regulation of carbon and phosphate utilization. In The Molecular and Cellular Biology of the Yeast Saccaromyces: Gene Expression. Eds. E W Jones, J R Pringle and J R Broach. pp 193–281 Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Joner E J and Jakobsen I 1994 Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from 32P-labelled organic matter during mineralization in soil. Plant Soil 163, 203–209.

    Article  CAS  Google Scholar 

  • Joner E J and Jakobsen I 1995a Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol. Biochem. 27, 1153–1159.

    Article  CAS  Google Scholar 

  • Joner E J and Jakobsen I 1995b Uptake of 32P from labelled organic matter by mycorrhizal and non-mycorrhizal subterranean clover (Trifolium subterraneum L.). Plant Soil 172, 221–227.

    Article  CAS  Google Scholar 

  • Joner E J and Johansen A 2000 Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol. Res. 104: 81–86.

    Article  CAS  Google Scholar 

  • Joner E J, Magid J, Gahoonia T S and Jakobsen I 1995 P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis sativus L.). Soil Biol. Biochem. 27, 1145–1151.

    Article  CAS  Google Scholar 

  • Kim K Y, Jordan D and McDonald G A 1998 Effect of phosphatesolubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fert. Soils 26, 79–87.

    Article  CAS  Google Scholar 

  • Kojima T, Hayatsu M and Saito M 1998 Intraradical hyphae phosphatase of the arbuscular mycorrhizal fungus, Gigaspora margarita. Biol. Fert. Soils 26, 331–335.

    Article  CAS  Google Scholar 

  • Kough J L, Gianinazzi-Pearson V and Gianinazzi S 1987 Depressed metaboilic activity of vesicular-arbuscular mycorrhizal fungi after fungicide applications. New Phytol. 106, 707–715.

    Article  CAS  Google Scholar 

  • Kroehler C J and Linkins A E 1988 The roots surface phosphatases of Eriophorum vaginatum: Effects of temperature, pH, substrate concentration and inorganic phosphorus. Plant Soil 105, 3–10.

    Article  CAS  Google Scholar 

  • Larsen J, Thingstrup I, Jakobsen I and Rosendahl S 1996 Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus-cucumber symbiosis. New Phytol. 132, 127–133.

    Article  CAS  Google Scholar 

  • Lee R B 1988 Phosphate influx and extracellular phosphatase activity in barley roots and rose cells. New Phytol. 109, 141–148.

    Article  CAS  Google Scholar 

  • Lewis D G and Quirk J P 1967 Phosphate diffusion in soil and uptake by plants. III. 31P-movement and uptake in plants as indicated by 32P-autoradiography. Plant Soil 27, 445–453.

    Article  Google Scholar 

  • Li M G, Shinano T and Tadano T 1997 Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Sci. Plant Nutr. 43, 237–245.

    CAS  Google Scholar 

  • Magid J, Tiessen H and Condron L M 1996 Dynamics of organic phosphorus in soils under natural and agricultural ecosystems. In Humic Substances in Terrestrial Ecosystems. Ed. A Piccolo. pp 429–466. Elsevier Science Publ, Amsterdam.

    Google Scholar 

  • Malcova R, Vosatka M and Albrechtov J 1999 Influence of arbuscular mycorrhizal fungi and simulated acid rain on the growth and coexistence of the grasses Calamagrostis villosa and Deschampsia flexuosa. Plant Soil 207, 45–57.

    Article  Google Scholar 

  • Maldonado-Mendoza I E and Harrison M J 1999 Regulation of the expression of a phosphate transporter from Glomus intraradices in reponse to exogenous levels of phosphate. In Plant Biology Division, 10th Anniversary Symposium Proceedings. Eds. R A Dixon, M J Harrison and M J Roossinck. pp 130–132. The Samuel Roberts Noble Foundation, Dallas.

    Google Scholar 

  • Martin J B and Doty D M 1949 Determination of inorganic phosphorus. Modification of isobutyl alcohol procedure. Analyt. Chem 21, 965–967.

    Article  CAS  Google Scholar 

  • McGee P A and Smith S E 1990 Activity of succinate dehydrogenase in vesicular-arbuscular mycorrhizal fungi after enzymic digestion from roots of Allium porrum. Mycol. Res. 94, 305–308.

    Article  CAS  Google Scholar 

  • McGill W B and Cole C V 1981 Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 287–309.

    Article  Google Scholar 

  • McLachlan K D 1980 Acid phosphatase activity of intact roots and phosphorus nutrition in plants. I. Assay conditions and phosphatase activity. Aust. J. Agric. Res. 31, 429–440.

    Article  CAS  Google Scholar 

  • Moore E, Helly V R, Conneely O M, Ward P P, Power R F and Headon D R 1995 Molecular cloning, expression and evaluation of phosphohydrolases for phytate-degrading activity. J. Industr. Microbiol. 14, 396–402.

    Article  CAS  Google Scholar 

  • Maas E V, Ogata G and Finkel M H 1979 Salt-induced inhibition of phosphate transport and release of membrane proteins from barley roots. Plant Physiol. 64, 139–143.

    PubMed  CAS  Google Scholar 

  • Nyc J F 1967 A repressible acid phosphatase in Neurospora crassa. Biochemi. Biophys. Res. Comm. 27, 183–188.

    Article  CAS  Google Scholar 

  • Nye P H and Tinker P B 1977 Solute movement in the soil-root system. Blackwell Scientific Publishers, Oxford. 342 p.

    Google Scholar 

  • Ocampo J A and Barea J M 1985 Effect of carbamate herbicides on VA mycorrhizal infection and plant growth. Plant Soil 85, 375–383.

    Article  CAS  Google Scholar 

  • Pant H K, Vaughan D and Edwards A C 1994 Molecular size distribution and enzymatic degradation of organic phosphorus in root exudates of spring barley. Biol. Fertil. Soils 18, 285–290.

    Article  CAS  Google Scholar 

  • Saito M, Stribley D P and Hepper C M 1993 Succinate dehydrogenase activity of external and internal hyphae of a vesiculararbuscular mycorrhizal fungus, Glomus mosseae (Nicol. & Gerd.) Gerdmann and Trappe, during mycorrhizal colonization of roots of leek (Allium porrum L.), as revealed by in situ histochemical staining. Mycorrhiza 4, 59–62.

    Article  CAS  Google Scholar 

  • Sanders F E and Tinker P B 1971 Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233, 278–279.

    Article  PubMed  CAS  Google Scholar 

  • Shand C A and Smith S 1997 Enzymatic release of phosphate from model substrates and P compounds in soil solution from a peaty podzol. Biol Fert Soils 24, 183–187.

    Article  CAS  Google Scholar 

  • Skujins J 1976 Extracellular enzymes in soil. CRC Crit. Rev. Microbiol. 4, 383–421.

    PubMed  CAS  Google Scholar 

  • St Arnaud M, Hamel C, Vimard B, Caron M and Fortin J A 1995 Altered growth of Fusarium oxysporum f.sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5, 431–438.

    Google Scholar 

  • Stainton M P 1980 Errors in molybdenum blue methods for determining orthophosphate in freshwater. Can. J. Fish. Aquat. Sci. 37, 472–478.

    CAS  Google Scholar 

  • Stevenson F J 1994 Humus chemistry, genesis, composition, reactions. 2 John Wiley & Sons, New York. 496 p.

    Google Scholar 

  • Sylvia DM 1988 Activity of external hyphae of vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 20, 39–43.

    Article  Google Scholar 

  • Tabatabai M A and Bremner J M 1969 Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307.

    Article  CAS  Google Scholar 

  • Tadano T, Ozawa K, Sakai H, Osaki M and Matsui H 1993 Secretion of acid phosphatase by the roots of crop plants under phosphorusdeficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil 156, 95–98.

    Article  Google Scholar 

  • Tarafdar J C 1995 Effect of vesicular-arbuscular mycorrhizal and phosphatase-producing fungal inoculation on growth and nutrition of white clover supplied with organic phosphorus. Folia Microbiol. Prague 40, 327–332.

    CAS  Google Scholar 

  • Tarafdar J C and Claassen N 1988 Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and micro-organisms. Biol. Fertil. Soils 5, 308–312.

    Article  CAS  Google Scholar 

  • Tarafdar J C and Jungk A 1987 Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fertil. Soils 3, 199–204.

    Article  CAS  Google Scholar 

  • Tarafdar J C and Marschner H 1994a Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. Soil Sci. Plant Nutr. 40, 593–600.

    CAS  Google Scholar 

  • Tarafdar J C and Marschner H 1994b Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem. 26, 387–395.

    Article  CAS  Google Scholar 

  • Tarafdar J C and Marschner H 1995 Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-phytate. Plant Soil 173, 97–102.

    Article  CAS  Google Scholar 

  • Thingstrup I and Rosendahl S 1994 Quantification of fungal activity in arbuscular mycorrhizal symbiosis by polyacrylamide gel electrophoresis and densitometry of malate dehydrogenase. Soil Biol. Biochem. 26, 1483–1489.

    Article  CAS  Google Scholar 

  • Thompson E J and Black C A 1970 Changes in extractable organic phosphorus in soil in the presence and absence of plants. III. Phosphatase effects. Plant Soil 32, 335–348.

    Article  CAS  Google Scholar 

  • Thomson B D, Robson A D and Abbott L K 1986 Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103, 751–765.

    Article  Google Scholar 

  • Tisserant B, Brenac V, Requena N, Jeffries P and Dodd J C 1998 The detection of Glomus spp. (arbuscular mycorrhizal fungi) forming mycorrhizas in three plants, at different stages of seedling development, using mycorrhiza-specific isozymes. New Phytol. 138, 225–239.

    Article  CAS  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S and Gollotte A 1993 In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol. Res. 97, 245–250.

    CAS  Google Scholar 

  • Tisserant B, Gininazzi S and Gianinazzi-Pearson V 1996 Relationships between lateral root order, arbuscular mycorrhiza development and the physiological state of the symbiotic fungus in Platanus acerifolia. Can. J. Bot. 74, 1947–1955.

    Google Scholar 

  • Trappe J M and Fogel R D 1977 Ecosystematic functions of mycorrhizae. In The Belowground Ecosystem: A Synthesis of Plant-Associated Processes. Range Soil Dept. Science Series No 26. Ed. J Marshall. pp 205–213. Colorado State University, Fort Collins.

    Google Scholar 

  • Trolldenier G 1992 Techniques for observing phosphorus mobilization in the rhizosphere. Biol. Fertil. Soils 14, 121–125.

    Article  CAS  Google Scholar 

  • Truog E and Meyer A H 1929 Improvements in the Denigè s colorimetric method for phosphorus and arsenic. Industr. Engng. Chem. (Anal.) 1, 136–139.

    Article  CAS  Google Scholar 

  • Van Noordwijk M, Martikainen P, Bottner P, Cuevas E, Rouland C and Dhillion S S 1998 Global change and root function. Glob. Change Biol. 4, 759–772.

    Article  Google Scholar 

  • Vosatka M and Dodd J C 1998 The role of different arbuscular mycorrhizal fungi in the growth of Calamagrostis villosa and Deschampsia flexuosa, in experiments with simulated acid rain. Plant Soil 200, 251–263.

    Article  CAS  Google Scholar 

  • Vosatka M 1995 Response of indigenous arbuscular mycorrhizal fungi to simulated acid rain. In Arbuscular Mycorrhizas as a Link Between East and West European Countries. Ed. K Turnau. pp 56–65. ECSC-EC-EAEC, Luxembourg.

    Google Scholar 

  • Vosatka M and Gryndler M 1999 Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl. Soil Ecol. 11, 245–251.

    Article  Google Scholar 

  • Went F and Stark N 1968 The biological and mechanical role of soil fungi. Proc. Natl. Acad. Sci. USA 60, 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Woolhouse HW1970 Differences in the properties of the acid phosphatases of plant roots and their significance in the evolution of edaphic ecotypes. In Ecological Aspects of Mineral Nutrition of Plants. Ed. I Rorison. pp 357–380. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Woolhouse H W 1975 Membrane structure and transport problems considered in relation to phosphorus and carbohydrate movements and the regulation of endotrophic mycorrhizal associations. In Endomycorrhizas. Eds. FE Sanders, B Mosse and PB Tinker. pp 209–239. Academic Press, London.

    Google Scholar 

  • Zhao B, Trouvelot A, Gianinazzi S and Gianinazzi-Pearson V 1997 Influence of two legume species on hyphal production and activity of two arbuscular mycorrhizal fungi. Mycorrhiza 7, 179–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joner, E.J., van Aarle, I.M. & Vosatka, M. Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: A review. Plant and Soil 226, 199–210 (2000). https://doi.org/10.1023/A:1026582207192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026582207192

Navigation