Skip to main content
Log in

Formulation and Evaluation of IMS, an Interactive Three-Dimensional Tropospheric Chemical Transport Model 2. Model Chemistry and Comparison of Modelled CH4, CO, and O3 with Surface Measurements

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

In part two of this series of papers on the IMS model, we present the chemistry reaction mechanism usedand compare modelled CH4, CO, and O3 witha dataset of annual surface measurements. The modelled monthly and 24-hour mean tropospheric OH concentrationsrange between 5–22 × 105 moleculescm−3, indicating an annualaveraged OH concentration of about 10 × 105 moleculescm−3. This valueis close to the estimated 9.7 ± 0.6 × 105 moleculescm−3 calculated fromthe reaction of CH3CCl3 with OH radicals.Comparison with CH4 generally shows good agreementbetween model and measurements, except for the site at Barrow where modelledwetland emission in the summer could be a factor 3 too high.For CO, the pronounced seasonality shown in the measurements is generally reproduced by the model; however, the modelled concentrations are lower thanthe measurements. This discrepancy may due to lower the CO emission,especially from biomass burning,used in the model compared with other studies.For O3, good agreement between the model and measurements is seenat locations which are away from industrial regions. The maximum discrepancies between modelled results and measurementsat tropical and remote marine sites is about 5–10 ppbv,while the discrepancies canexceed 30 ppbv in the industrial regions.Comparisons in rural areas at European and American continental sites arehighly influenced by the local photochemicalproduction, which is difficult to model with a coarse global CTM.The very large variations of O3 at these locations vary from about15–25 ppbv in Januaryto 55–65 ppbv in July–August. The observed annual O3amplitude isabout 40 ppbv compared with about 20 ppbv in the model. An overall comparison of modelled O3 with measurements shows thatthe O3seasonal surface cycle is generally governed bythe relative importance of two key mechanisms that drivea springtime ozone maximum and asummertime ozone maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. E., 1983: The troposphere to stratosphere radiation field at twilight: A spherical model, Planet. Space Sci. 31 (12), 1517-1523.

    Google Scholar 

  • Atkinson, R., 1985: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev. 85, 69-201.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson Jr., R. F., Kerr, J. A., and Troe, J., 1989: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III, J. Phys. Chem. Ref. Data 18, 881-1097.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson Jr., R. F., Kerr, J. A., and Troe, J., 1992: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV, IUPC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data 21, 1126-1568.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Hampson Jr., R. F., Kerr, J. A., Troe, J., and Watson, R. T., 1984: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II, J. Phys. Chem. Ref. Data 13, 1259-1380.

    Google Scholar 

  • Berntsen, T. K., and Isaksen, I. S. A., 1997: A global three-dimensional chemical transport model for the troposphere. 1. Model description and CO and ozone results, J. Geophys. Res. 102 (D17), 21239-21280.

    Google Scholar 

  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide, NCAR Technical Note, NCAR/TN-417+STR, National Center for Atmospheric Research, Boulder, Colorado, p. 150.

    Google Scholar 

  • Brasseur, G. and Solomon, S., 1995: Aeronomy of the Middle Atmosphere, 2nd edn, D. Reidel Publishing Co., p. 452.

  • Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Müller, J.-F., Granier, C., and Tie, X. X., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description, J. Geophys. Res. 21 (D21), 28,265-28,289.

    Google Scholar 

  • Calvert, J. G. and Pitts Jr., J. N., 1966: Photochemistry, John Wiley and Sons, Inc.

  • Calvert, J. G. and Madronich, S., 1987: Theoretical study of the initial products of the atmospheric oxidation of hydrocarbons, J. Geophys. Res. 92, 2211-2220.

    Google Scholar 

  • Cantrell, C. A., Stockwell, W. R., Anderson, L. G., Busarow, K. L., Perner, D., Schmeltekopf, A., Calvert, J. G., and Johnston, H. S., 1985: Kinetic study of the NO3-CH2O reaction and its possible role in nighttime tropospheric chemistry, J. Phys. Chem. 89, 139-146.

    Google Scholar 

  • Carter, W. P. L., 1990: A detailed mechanism for the gas-phase atmospheric reactions of organic compounds, Atmos. Environ. 24, 481-518.

    Google Scholar 

  • Carter, W. P. L., Lurmann, F. W., Atkinson, R., and Lloyd, A. C., 1986: Development and testing of a surrogate species chemical reaction mechanism, Vol. I, NTIS PB 86-212 404/AS, Natl. Tech. Inf. Serv., Springfield, Va.

    Google Scholar 

  • CCME, 1997: Ground-level ozone and its precursors, 1980-1993, Canadian 1996 NOx/VOC Science Assessment, ISBN 1-896997-00-7, Report of the Data Analysis Working Group.

  • Chameides, W. L. and Davis, D. D., 1982: The free radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res. 87 (C7), 4863-4877.

    Google Scholar 

  • Chameides, W. L., 1984: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res. 89 (D3), 4739-4755.

    Google Scholar 

  • Chang, J. S., Brost, R. A., Isaksen, I. S., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J., 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation, J. Geophys. Res. 92 (D12), 14681-14700.

    Google Scholar 

  • Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Fowler, M. S., and Spiro, P. A., 1996: A global three-dimensional model of tropospheric sulfate, J. Geophys. Res. 101 (D13), 18667-18690.

    Google Scholar 

  • Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G., 1997: Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls, J. Atmos. Chem. 26, 223-274.

    Google Scholar 

  • Colombo, T., Cundari, V., Bonasoni, P., Cervino, M., Evangelisti, F., Georgiadis, T., and Giovanelli, G., 1992: Episodes of vertical and horizontal ozone transport monitored at Italy's Mt. Cimone Observatory, in R. D. Hudson (ed.), Ozone in the Troposphere and Stratosphere, Part 1, Proceedings of the Quadrennial Ozone Symposium 1992, pp. 138-141.

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1992: Chemical kinetics and photochemical data for use in stratospheric modeling, in Evaluation 10, JPL Publication 92-20.

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1994: Chemical kinetics and photochemical data for use in stratospheric modeling, in Evaluation 11, JPL Publication 94-26.

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, in Evaluation 12, JPL Publication 97-4.

  • Dentener, F. J., 1993: Heterogeneous chemistry in the troposphere, Ph.D. Thesis, Universiteit Utrecht, Utrecht.

    Google Scholar 

  • Dentener, F. J. and Crutzen, P. J., 1993: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH, J. Geophys. Res. 98 (D4), 7149-7163.

    Google Scholar 

  • Dentener, F. J. and Crutzen, P. J., 1994: A three-dimensional model of the global ammonia cycle, J. Atmos. Chem 19, 331-369.

    Google Scholar 

  • Dlugokencky, E. J. and Howard, C. J., 1989: Studies of NO3 radical reactions with some atmospheric organic compounds at low pressure, J. Phys. Chem. 93, 1091-1096.

    Google Scholar 

  • Elansky, N. F., Makarov, O. V., and Senik, I. A., 1992: Surface ozone variability at Kislovodsk Observatory, in R. D. Hudson (ed.), Ozone in the Troposphere and Stratosphere, Part 1, Proceedings of the Quadrennial Ozone Symposium 1992, pp. 130-133.

  • Finlayson-Pitts, B. J. and Pitts, J. N., 1986: Atmospheric Chemistry: Fundamental and Experimental Techniques, John Wiley, New York, p. 1098.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts Jr., J. N., 1997: Tropospheric air pollution: Ozone, airbone toxics, polycyclic aromatic hydrocarbons, and particles, Science 276, 1045-1052.

    Google Scholar 

  • Ganzeveld, L. and Lelieveld, J., 1995: Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases, J. Geophys. Res. 100 (D10), 20999-21012.

    Google Scholar 

  • Girgzdiene, R., 1996: Changes in surface ozone, Lithuania 1980-1995, in R. D. Bojkov and G. Visconti (eds), Atmospheric Ozone, Proceedings of the XVIII Quadrennial Ozone Symposium, Volume 1, pp. 371-374.

  • Gomišcek, B., Cigler, R., Hrcek, D., Gomišcek, S., Lsšnjak, M., Pauli, P., Pompe, M., and Veber, M., 1997: Measurements of atmospheric constituents and their relationship to the ozone formation in Slovenia, in Ø. Hov (ed.), Tropospheric Ozone Research, Tropospheric Ozone in the Regional and Sub-regional Context, Springer, pp. 271-276.

  • Gros, V., Martin, D., Poisson, N., Kanakidou, M., and Bonsang, B., 1997: Observation and modelling of the seasonal variations of surface ozone at Amsterdam Island: Preliminary results (1994-1996), in B. Larsen, B. Version, and G. Angeletti (eds), The Oxidizing Capacity of the Troposphere, Proceedings of the Seventh European Symposium on Physico-Chemical Behaviour of Atmospheric Pollutants, pp. 411-415.

  • Hack, J. J., Boville, B. A., Briegleb, B. P., Kiehl, J. T., Rasch, P. J., and Williamson, D. L., 1993: Description of the NCAR Community Climate Model (CCM2), NCAR Tech. Note, NCAR/TN-382+STR, Natl. Cent. for Atmos. Res., Boulder, Colo., p. 108.

    Google Scholar 

  • Hall, I. W., Wayne, R. P., Cox, R. A., Jenkin, M. E., and Hayman, G. D., 1988: Kinetics of the reaction of NO3 with HO2, J. Phys. Chem. 92, 5049-5054.

    Google Scholar 

  • Harrison, R. M., Peak, J. D., and Collins, G. M., 1996: Tropospheric cycle of nitrous acid, J. Geophys. Res. 101 (D9), 14429-14439.

    Google Scholar 

  • Hauglustaine, D. A., Brasseur, G. P., Walters, S., Rasch, P. J., Müller, J.-F., Emmons, L. K., and Carroll, M. A., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers 2. Model results and evaluation, J. Geophys. Res. 103 (D21), 28291-28335.

    Google Scholar 

  • Hein, R., Crutzen, P. J., and Hemann, M., 1997: An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles 11, 43-76.

    Google Scholar 

  • Hertel, O., Berkowicz, R., Christensen, J., and Øysten, H., 1993: Test of two numerical schemes for use in atmospheric transport-chemistry models, Atmos. Environ. 27A, 2591-2611.

    Google Scholar 

  • Hoskins, B. J., 1991: Towards a PV-θ view of the general circulation, Tellus 43AB, 27-35.

    Google Scholar 

  • Hough, A. M., 1991: Development of a two-dimensional global tropospheric model: Model chemistry, J. Geophys. Res. 96, 7325-7362.

    Google Scholar 

  • Hov, Ø., Kley, D., Volz-Thomas, A., Beck, J., Grennfelt, P., and Penkett, S. A., 1997: An overview of tropospheric ozone research, in Ø. Hov (ed.), Tropospheric Ozone Research, Tropospheric Ozone in the Regional and Sub-regional Context, Springer, pp. 1-34.

  • Jenkin, M. E., Saunders, S.M., and Piling, M. J., 1996, Constructing a detailed chemical mechanism for use in tropospheric chemistry models, AEA Technology, AEA/RAMP/18360008/003/ISSUE 2.

  • Kasting, J. F. and Singh, H. B., Nonmethane hydrocarbons in the troposphere: Impact on the odd hydrogen and odd nitrogen chemistry, J. Geophys. Res. 91 (D12), 13239-13256.

  • Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb, B. P., Williamson, D. L., and Rash, P. J., 1996: Description of the NCAR community climate model (CCM3), NCAR Tech. Note, NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, Colorado, p. 152.

    Google Scholar 

  • Kircher, C. C. and Sander, S. P., 1984: Kinetics and mechanism of HO2 and DO2 disproportionations, J. Phys. Chem. 88, 2082-2091.

    Google Scholar 

  • Klasinc, L., Butkovic, V., Cvitaš, T., Kezele, N., Lisac, I., and Lovric, J., 1997: Ozone measurements in Zagreb and on Mount Medvednica in Croatia, in Ø. Hov (ed.), Tropospheric Ozone Research, Tropospheric Ozone in the Regional and Sub-regional Context, Springer, pp. 222-229.

  • Lary, D. J. and Pyle, J. A., 1991: Diffusive-radiation, twilight, and photochemistry: 1, J. Atmos. Chem. 13, 373-392.

    Google Scholar 

  • Lary, D. J. and Pyle, J. A., 1991: Diffusive-radiation, twilight, and photochemistry: 2, J. Atmos. Chem. 13, 393-406.

    Google Scholar 

  • Laurila, T., Hakola, H., Lättilä, H., and Koskien, T., 1997: Photochemical observations at Utö-a moderately polluted site with a pronounced seasonal cycle, in Ø. Hov (ed.), Tropospheric Ozone Research, Tropospheric Ozone in the Regional and Sub-regional Context, Springer, pp. 365-370.

  • Law, K. S., Plantevin, P. H., Shallcross, D. E., Rogers, H. L., Pyle, J. A., Grouhel, C., Thouret, V., and Marenco, A., 1998: Evaluation of modelled O3 using MOZAIC data, J. Geophys. Res. 103 (D19), 25721-25737.

    Google Scholar 

  • Lelieveld, J., 1989: The role of clouds in tropospheric photochemistry, Ph.D. Thesis, Mainz.

  • Liang, J., Horowitz, L. W., Jacob, D. J., Wang, Y., Fiore, A. M., Logan, J. A., Gardner, G. M., and Munger, J. W., 1998: Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere, J. Geophys. Res. 103 (D11), 13435-13450.

    Google Scholar 

  • Lindskog, A. and Moldanova, J., 1994: The influence of the origin, season and time of the day on the distribution of individual NMHC measured at Rörvik, Sweden, Atmos. Environ. 28, 2383-2398.

    Google Scholar 

  • Logan, J. A., 1989: Ozone in rural areas of the United States, J. Geophys. Res. 94 (D6), 8511-8532.

    Google Scholar 

  • Lovejoy, E. R., Hanson, D. R., and Huey, L. G., 1996: Kinetics and products of the gas-phase reaction of SO3 with water, J. Phys. Chem. 100, 19911-19916.

    Google Scholar 

  • Lurmann, F. W., Lloyd, A. C., and Atkinson, R., 1986: A chemical mechanism for use in long-range transport/acid deposition computer modeling, J. Geophys. Res. 91, 10905-10936.

    Google Scholar 

  • Madronich, S. and Calvert, J. G., 1989: The NCAR Master Mechanism of the gas phase chemistry-Version 2.0, NCAR Tech. Note, NCAR/TN-333+STR.

  • Madronich, S. and Calvert, J. G., 1990: Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res. 95, 5697-5715.

    Google Scholar 

  • Meier, R. R., Anderson, D. E., and Nicolet, M., 1982: The radiation field in the troposphere and stratosphere from 240 to 1000 nm: General analysis, Planet. Space Sci. 30 (9), 912-933.

    Google Scholar 

  • Moortgat, G. K., Veyret, B., and Lesclaux, R., 1989a: Absorption spectrum and kinetics of reactions of the acetylperoxy radical, J. Phys. Chem. 93, 2362-2368.

    Google Scholar 

  • Moortgat, G. K., Veyret, B., and Lesclaux, R., 1989b: Kinetics of the reaction of HO2 with CH3C(O)O2 in the temperature range 253-368 K, Chem. Phys. Lett. 160, 443-447.

    Google Scholar 

  • Mozurkewich, M., McMurry, P. H., Gupta, A., and Calvert, J. A., 1987: Mass accomodation coefficient for HO2 radicals on aqueous particles, J. Geophys. Res. 92 (D4), 4163-4170.

    Google Scholar 

  • Müller, J.-F. and Brasseur, G., 1995: IMAGES: A three-dimensional chemical transport model of the global troposphere, J. Geophys. Res. 100 (D8), 16445-16490.

    Google Scholar 

  • Muramatsu, H., 1992: Evaluation of the production and the destruction of ozone in the lower atmosphere, in R. D. Hudson (ed.), Ozone in the Troposphere and Stratosphere, Part 1, Proceedings of the Quadrennial Ozone Symposium 1992, pp. 142-145.

  • Oltmans, S. J. and Levy II, H., 1992: Ozone measurements from a global network of surface sites, in R. D. Hudson (ed.), Ozone in the Troposphere and Stratosphere, Part 1, Proceedings of the Quadrennial Ozone Symposium 1992, pp. 19-23.

  • Oyola, P., Areskoug, H., and Bazhanov, V., 1997: Ozone research at the Swedish stations Aspvreten and Areskutan and the activities of ITM-APL in TOR, in Ø. Hov (ed.), Tropospheric Ozone Research, Tropospheric Ozone in the Regional and Sub-regional Context, Springer, pp. 277-284.

  • Pandis, S. N. and Seinfeld, J. H., 1989: Sensitivity analysis of a chemical mechanism for aqueousphase atmospheric chemistry, J. Geophys. Res. 94 (D1), 1105-1126.

    Google Scholar 

  • Parrish, D. D., Trainer, M., Holloway, J. S., Yee, J. E., Warshawsky, M. S., Fehsenfeld, F. C., Forbes, G. L., and Moodey, J. L., 1998: Relationships between ozone and carbon monoxide at surface sites in the North Atlantic region, J. Geophys. Res. 103 (D11), 13357-13376.

    Google Scholar 

  • Pham, M., Müller, J.-F., Brasseur, G. P., Granier, C., and Mégie, G., 1995: A three-dimensional study of the tropospheric sulfur cycle, J. Geophys. Res. 100 (D12), 26061-26092.

    Google Scholar 

  • Plum, C. N., Sanhueza, E., Atkinson, R., Carter, W. P. L., and Pitts Jr., J. N., 1983: OH radical rate constants and photolysis rates of α-dicarbonyls, Environ. Sci. Technol. 17, 479-484.

    Google Scholar 

  • Pochanart, P., Hirokawa, J., Kajii, Y., and Akimoto, H., 1996: Surface ozone and carbon monoxide measurement at Oki Island, Japan, during March 1994 to February 1996, in R. D. Bojkov and G. Visconti (eds), Atmospheric Ozone, Proceedings of the XVIII Quadrennial Ozone Symposium, Volume 1, pp. 419-422.

  • Puxbaum, H., Gomiscek, B., and Radunsky, K., 1997: Measurements of trace constituents at the high Alpine background station, Sonnblick, in Ø. Hov (ed.), Tropospheric Ozone Research, Tropospheric Ozone in the Regional and Sub-Regional Context, Springer, pp. 351-356.

  • Roberts, J. M., 1990, The atmospheric chemistry of organic nitrates, Atmos. Environ. 24, 243-287.

    Google Scholar 

  • Shende, R. R., Jayaraman, K., Sreedharan, C. R., and Tiwari, V. S., 1992: Broad features of surface ozone variations over Indian region, in R. D. Hudson (ed.), Ozone in the Troposphere and Stratosphere, Part 1, Proceedings of the Quadrennial Ozone Symposium 1992, pp. 24-32.

  • Simmonds, P. G., 1997: Tropospheric ozone research and global atmospheric gases experiments, Mace Head, Ireland, in Ø. Hov (ed.), Tropospheric Ozone Research, Tropospheric Ozone in the Regional and Sub-regional Context, Springer, pp. 238-244.

  • Singh, H. B. and Kasting, J. F., 1988: Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere, J. Atmos. Chem. 7, 261-285.

    Google Scholar 

  • Smit, H. G. J., Kley, D., and Sträter, W., 1997: Vertical distribution of ozone and water vapour over Jülich, and the evaluation of the ECC ozone sondes under quasi flight conditions, in Ø. Hov (ed.), Tropospheric Ozone Research, Tropospheric Ozone in the Regional and Sub-regional Context, Springer, pp. 426-439.

  • Sunwoo, Y. and Carmichael, G. R., 1992: Tropospheric ozone in the western Pacific rim: Analysis of satellite and surface-based observations along with comprehensive 3-D model simulations, in R. D. Hudson (ed.), Ozone in the Troposphere and Stratosphere, Part 1, Proceedings of the Quadrennial Ozone Symposium 1992, pp. 53-56.

  • Tsuruta, H., Shinya, K., Mizoguchi, T., and Ogawa, T., 1988: Seasonal behavior of the troposphere ozone in the rural Japan, in R. D. Bojkov and P. Fabian (eds), Ozone in the Atmosphere, Proceedings of the Quadrennial Ozone Symposium 1988 and Tropospheric Ozone Workshop, pp. 433-436.

  • Tiedtke, M., 1989: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large Scale Models, Mon. Wea. Rev. 117, 1779-1800.

    Google Scholar 

  • Tiedtke, M., 1993: Representation of clouds in large-scale Models, Mon. Wea. Rev. 121, 3040-3061.

    Google Scholar 

  • Volz, A., Geiss, H., McKeen, S., and Kley, D., 1988: Correlation of ozone and solar radiation at Montsouris and Hohenpeissenberg: Indications for photochemical influence, in R. D. Bojkov and P. Fabian (eds), Ozone in the Atmosphere, Proceedings of the Quadrennial Ozone Symposium 1988 and Tropospheric Ozone Workshop, pp. 447-450.

  • Wang, K.-Y., Pyle, J. A., Sanderson, M. G., and Bridgeman, C., 1999: Implementation of a convective atmospheric boundary layer scheme in a tropospheric chemistry transport model, J. Geophys. Res. 104 (D19), 23,729-23,745.

    Google Scholar 

  • Wang, Y., Logan, J. A., and Jacob, D. J., 1998: Global simulation of tropospheric O3-NOx -hydrocarbon chemistry 2. Model evaluation and global ozone budget, J. Geophys. Res. 103 (D9), 10,727-10,755.

    Google Scholar 

  • Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-MAS, C. E., Hjorth, J., Le Bras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H., 1990: The nitrate radical: Physics, chemistry, and the atmosphere, Commission of the European Communities, Air Pollution Research Report 31.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, KY., Pyle, J.A., Shallcross, D.E. et al. Formulation and Evaluation of IMS, an Interactive Three-Dimensional Tropospheric Chemical Transport Model 2. Model Chemistry and Comparison of Modelled CH4, CO, and O3 with Surface Measurements. Journal of Atmospheric Chemistry 38, 31–71 (2001). https://doi.org/10.1023/A:1026566105073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026566105073

Navigation