Skip to main content
Log in

Water splitting at ion-exchange membranes and potential differences in soil during electrodialytic soil remediation

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The optimum current for electrodialytic soil remediation occurs when the limiting current of the anion-exchange membrane is exceeded while that for the cation-exchange membrane is not. At this current, an acidic front will pass through the soil from the anion-exchange membrane towards the cathode, and the polluting heavy metals will be mobilized in the acidic environment. At the same time no production of base will occur from the cation-exchange membrane. A basic environment causes precipitation of hydroxides in the soil next to the cation-exchange membrane, and this will give an increase in voltage drop in the system and furthermore hinder the transport of the heavy metals out of the soil. When the acidic front passes through the soil, the voltage drop will decrease, and the end of the remediation can be predicted by the decrease in voltage to a very low level between the working electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Ottosen and H.K. Hansen,in Proceedings from 2nd symposium on 'Heavy Metals in the Environment and Electromigration Applied to Soil Remediation' Technical University of Denmark (1999) p. 35.

  2. A.N. Alshawabkeh, A.T. Yeung and M.R. Bricka, J. Environ. Eng. Jan. (1999) 27.

  3. Z. Li, J.-W. Yu and I. Neretnieks, J. Contam. Hydrol. 22 (1996) 241.

    Google Scholar 

  4. Y.B. Acar, E.E. Ozsu, A.N. Alshawabkeh, M.F. Rabbi and R.J. Gale, Chemtech, Apr. (1996) 40.

  5. M. Electrorowicz and V. Boeva, Environ. Technol. 17 (1996) 1339.

    Google Scholar 

  6. A.V. Ho, P.W. Sheridan, C.J. Heitkamp, J.M. Brackin, D. Weber and P.H. Brodsky, Environ. Sci. Technol. 29 (1995) 2528.

    Google Scholar 

  7. R. Lageman, Environ. Sci. Technol. 27 (1993) 2648.

    Google Scholar 

  8. J. Trombly, Environ. Sci. Technol. 28 (1994) 289A.

    Google Scholar 

  9. L.M. Ottosen and H.K. Hansen, 'Electrokinetic Cleaning of Heavy Metal Polluted Soil', Internal Report (1992) (In English).

  10. A.B. Ribeiro, E.P. Matheus, L.M. Ottosen and G. Bech-Nielsen, Environ. Sci. Technol. 34 (2000) 784.

    Google Scholar 

  11. H.K. Hansen, L.M. Ottosen and A. Villumsen, in Proceedings, sp. cit. [1], pp. 129-134.

  12. H.K. Hansen, L.M. Ottosen, L. Hansen, B.K. Kliem and A. Villumsen, in Proceedings from the workshop on 'Electromigration Applied to Soils Remediation', albi, France (1997), paper 13.

  13. R. Simons, Desalination 28 (1979) 41.

    Google Scholar 

  14. I. Rubinstein, A. Warshawsky, L. Schechtman and O. Kedem, Desalination 51 (1984) 55.

    Google Scholar 

  15. Y. Oda and T. Yawataya, Desalination 5 (1968) 129.

    Google Scholar 

  16. R. Simons, Electrochim. Acta 29 (1984) 151.

    Google Scholar 

  17. L.M. Ottosen, H.K. Hansen, S. Laursen and A. Villumsen, Environ. Sci. Technol. 31 (1997) 1711.

    Google Scholar 

  18. H.K. Hansen, L.M. Ottosen, L. Hansen, B.K. Kliem, A. Villumsen and G. Bech-Nielsen, Trans IchemE 77 (1999) 218.

    Google Scholar 

  19. B.J. Alloway (Ed), 'Heavy Metals in Soils', 2nd edn, (Blackie Academic & Professional, 1995).

  20. A.B. Ribeiro and J.T. Mexia, J. Hazard. Mater. 56 (1997) 257.

    Google Scholar 

  21. Y.B Acar, R.J. Gale, A.N. Alshawabkeh, R.E. Marks, S. Puppala, M. Bricka and R. Parker, J. Hazard. Mater. 40 (1995) 117.

    Google Scholar 

  22. H.K. Hansen, L.M. Ottosen, S. Laursen and A. Villumsen, Sep. Sci. Technol. 32 (1997) 2425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottosen, L., Hansen, H. & Hansen, C. Water splitting at ion-exchange membranes and potential differences in soil during electrodialytic soil remediation. Journal of Applied Electrochemistry 30, 1199–1207 (2000). https://doi.org/10.1023/A:1026557830268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026557830268

Navigation