Skip to main content
Log in

Improvement of the high energy ball-milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ball-milling has been used to prepare performing CO tolerant polymer electrolyte fuel cell anode catalysts that contain Pt and Ru. The catalyst precursors are obtained by milling together Pt, Ru and a dispersing agent in the atomic ratio 0.5, 0.5 and 4.0. This precursor is not easily recovered after milling because it sticks to the walls of the vial and on the grinding balls. However, the precursor is recovered as a powder when a process control agent (PCA) is added during the milling step. Various PCAs have been used. The PCA should not interfere with the electrocatalytic activity of the catalysts obtained by leaching the precursor. The best preparation of catalyst precursors are obtained by milling: (i) Pt, Ru and Al (dispersing agent) in the atomic ratio 0.5, 0.5, 4.0 + 10 wt% NaF (PCA) or (ii) Pt , Ru and MgH2 in the 0.5, 0.5, 4.0 atomic or molecular ratio. In this case, MgH2 plays at the same time the role of a dispersing agent and that of a PCA. The catalysts are obtained by leaching Al and NaF in (i) or MgH2 in (ii). The CO tolerance of these catalysts is equivalent to that of Pt0.5Ru0.5 Black from Johnson Matthey. The ball-milled catalysts have a surface area comprised between 30 and 44 m2 g−1. As-prepared catalysts are mainly made of metallic Pt and metallic plus oxidized Ru. After fuel cell tests, Pt is completely metallic while the oxidized Ru content decreases but does not disappear. These catalysts are composed of particles with crystallites of two different sizes: in (i) nanocrystallites (∼4 nm) that contain essentially Pt alloyed with Al and perhaps some Ru, and larger (≥∼30 nm) crystallites that contain essentially Ru; in (ii) Pt nanocrystalline particles that may contain some Ru and larger particles that contain essentially either Ru or Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Gottesfeld and T. A. Zawodzinski, Adv. Electrochem. Sci. Eng. 5 (1997) 195.

    Google Scholar 

  2. P.N. Ross, Jr., In J. Lipkowski and P.N. Ross (Eds), 'Electrocatalysis' (Wiley-VCH, New York, 1998), p. 43.

    Google Scholar 

  3. B.N. Grgur, N.M. Markovic and P.N. Ross, Jr., J. Phys. Chem. B 102 (1998) 2494.

    Google Scholar 

  4. B.N. Grgur, M. Markovic and P.N. Ross, J. Electrochem. Soc. 146 (1999) 1613.

    Google Scholar 

  5. S. Mukerjee, S.J. Lee, E.A. Ticianelli, J. McBreen, B.N. Grgur, N.M. Markovic, P.N. Ross, J.R. Giallombardo and E.S. De Castro, Electrochem. Solid-State Lett. 2 (1999) 12.

    Google Scholar 

  6. L.W. Niedrach, D.W. McKee, J. Paynter and I.F. Danzig, J. Electrochem. Technol. 5 (1967) 318.

    Google Scholar 

  7. D.W. McKee and A. Scarpellino, J. Electrochem. Technol. 6 (1968) 101.

    Google Scholar 

  8. P.N. Ross, K. Kinoshita, A.J. Scarpellino and P. Stonehart, J. Electroanal. Chem. 63 (1975) 97.

    Google Scholar 

  9. A.K. Shukla, P.A. Christensen, A.J. Dickinson and A. Hamnett, J. Power Sources 76 (1998) 54.

    Google Scholar 

  10. A.S. Arico, A.K. Shukla, K.M. El-Khatib, P. Creti and V. Antonucci, J. Appl. Electrochem. 29 (1999) 671.

    Google Scholar 

  11. M. Baldauf and W. Preidel, J. Power Sources 84 (1999) 161.

    Google Scholar 

  12. X. Ren, T. E. Springer and S. Gottesfeld, J. Electrochem. Soc. 147 (2000) 92.

    Google Scholar 

  13. H. Dohle, J. Divisek and R. Jung, J. Power Sources 86 (2000) 469.

    Google Scholar 

  14. X. Ren, P. Zelenay, S. Thomas, J. Davey and S. Gottesfeld, J. Power Sources 86 (2000) 111.

    Google Scholar 

  15. P. Argyropoulos, K. Scott and W.M. Taama, J. Power Sources 87 (2000) 153.

    Google Scholar 

  16. M.P. Hogarth and G. Hards, Platinum Metals Rev. 40 (1996) 150.

    Google Scholar 

  17. A. Hamnett, Catalysis Today 38 (1997) 445.

    Google Scholar 

  18. S. Wasmus and A. Küver, J. Electroanal. Chem. 461 (1999) 14.

    Google Scholar 

  19. M.C. Denis, G. Lalande, D. Guay, J.P. Dodelet and R. Schulz, J. Appl. Electrochem. 29 (1999) 951.

    Google Scholar 

  20. C. Suryanarayana, in C. Suryanarayana (Ed) 'Non-equilibrium Processing of Materials' (Pergamon Materials Series, Pergamon, Amsterdam, 1999) p. 49.

    Google Scholar 

  21. G. Lalande, M.C. Denis, D. Guay, J.P. Dodelet and R. Schulz, J. Alloys Compounds 292 (1999) 301.

    Google Scholar 

  22. B.D. Cullity, in 'Elements of X-ray Diffraction' (Addison-Wesley, 4th edn, 1978).

  23. C. Suryanarayana, in P.W. Lee (Ed), 'Powder Metal Technologies and Applications' (ASM International, Materials Park, OH, 1998), p. 80.

    Google Scholar 

  24. H.A. Gasteiger, P.N. Ross and E.J. Cairns, Surf. Sci. 293 (1993) 67.

    Google Scholar 

  25. J.M. Hutchinson, Plat. Met. Rev. 16 (1972) 88.

    Google Scholar 

  26. J.S. Hammond and N. Winograd, J. Electroanal. Chem. 78 (1977) 55.

    Google Scholar 

  27. J.B. Goodenough, A. Hamnett, B.J. Kennedy, R. Manoharan and S.A. Weeks, J. Electroanal. Chem. 240 (1988) 133.

    Google Scholar 

  28. G.N. Derry and P.N. Ross, Solid State Commun. 52 (1984) 151.

    Google Scholar 

  29. K.A. Daube, M.T. Paffett, S. Gottesfeld and C.T. Campbell, J. Vac. Sci. Technol. A 4 (1986) 1617.

    Google Scholar 

  30. C.D. Wagner, W.W. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, 'Handbook of X-ray Photoelectron Spectroscopy' (Perkin-Elmer Corporation, 1978).

  31. W.F. Lin, M.S. Zei, M. Eiswirth, G. Ertl, T. Iwasita and W. Vielstich, J. Phys. Chem. B 103 (1999) 6968.

    Google Scholar 

  32. D.R. Rolinson, P.L. Hagans, K.E. Swider and J.W. Long, Langmuir 15 (1999) 774.

    Google Scholar 

  33. J.Y. Shen, A. Adnot and S. Kaliaguine, Appl. Surf. Sci. 51 (1991) 47.

    Google Scholar 

  34. M.T.M. Koper, J.J. Lukkien, A.P.J. Jansen and R.A. van Santen, J. Phys. Chem. B 103 (1999) 5522.

    Google Scholar 

  35. K.A. Friedrich, K.P. Geyzers, A. Marmann, U. Stimming and R.Z. Vogel, Z. Phys. Chem. 208 (1999) 137.

    Google Scholar 

  36. P.K. Shen, K.Y. Chen and A.C.C. Tseung, J. Electrochem. Soc. 142 (1995) L85.

    Google Scholar 

  37. G. Lalande, M.C. Denis, P. Gouerec, D. Guay, J.P. Dodelet and R. Schulz, J. New Mater. Electrochem. Syst. 3 (2000) 185.

    Google Scholar 

  38. F. Delime, J.M. Léger and C. Lamy, J. Appl. Electrochem. 29 (1999) 1249.

    Google Scholar 

  39. J. McBreen and S. Mukerjee, J. Electrochem. Soc. 142 (1995) 3399.

    Google Scholar 

  40. A. G. Gunner, I.T. Hyde, R.J. Potter and D. Thompsett, European Patent Application EP 0838872A2.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denis, M., Gouérec, P., Guay, D. et al. Improvement of the high energy ball-milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells. Journal of Applied Electrochemistry 30, 1243–1253 (2000). https://doi.org/10.1023/A:1026542821607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026542821607

Navigation