Skip to main content
Log in

Formation and Gelation of Titania Nanoparticles from AOT Reverse Micelles

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Titania nanoparticles have been produced by the controlled hydrolysis of tetraisopropyltitanate (TPT) in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. Particle formation and aggregation were investigated by static and dynamic light scattering and the chemical species by vibrational spectroscopy.

The kinetics of particle formation and aggregation were controlled by varying [H2O]/[AOT] (w 0), [H2O]/[Ti(IV)] and [AOT]/[Ti(IV)]. Nanoparticles, with diameters <10 nm, could be produced at relatively high Ti(IV) concentrations (up to 0.05 M). These nanoparticles aggregated into sols, with colloid sizes of 20 to 200 nm, eventually forming gelatinous precipitates.

Different titania phases were produced, depending on the size of the micellar water pool; small pools (w 0<6) yielded amorphous particles, while larger pools (w 0>10) produced anatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Siegel and J.A. Eastman, Mater. Res. Symp. Proc. 132, 3 (1988).

    Google Scholar 

  2. P.D.I. Fletcher, A.M. Howe, and B.H. Robinson, J. Chem. Soc., Faraday Trans. I 83, 985 (1987).

    Google Scholar 

  3. K. Osseo-Asare and F.J. Arriagada, in Ceramic Transactions 12 (1990) (Proc. 3rd Int. Conf. on Powder Processing Science, edited by G.L. Messing et al., San Diego, Feb. 4–6, 1990) p. 3.

  4. H. Yamauchi, T. Ishikawa, and S. Kondo, Colloids Surf. 37, 71 (1989).

    Google Scholar 

  5. T. Hirai, H. Sato, and I. Komasawa, Ind. Eng. Chem. Res. 32, 3014 (1993).

    Google Scholar 

  6. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  7. J.R. Bartlett and J.L. Woolfrey, Mater. Res. Symp. Proc. 271, 309 (1992).

    Google Scholar 

  8. P.D. Moran, G.A. Bowmaker, R.P. Cooney, J.R. Bartlett, and J.L. Woolfrey, Langmuir 11, 738 (1995).

    Google Scholar 

  9. J.C. Parker and R.W. Siegel, J. Mater. Res. 5, 1246 (1990).

    Google Scholar 

  10. J.R. Bartlett, M.J. Percy, J.L. Woolfrey, L. Spiccia, and B.O. West, J. Sol-Gel Sci. Technol. 2, 215 (1994).

    Google Scholar 

  11. A. Maitra, J. Phys. Chem. 88, 5122 (1984).

    Google Scholar 

  12. S. Tohno and M. Itoh, J. Aerosol Sci. 24, 339 (1993).

    Google Scholar 

  13. J.P. Wilcoxon, R.L. Williamson, and R. Baughman, J. Chem. Phys. 98, 9933 (1993).

    Google Scholar 

  14. P. Plucinski and W. Nitsch, Langmuir 10, 371 (1994).

    Google Scholar 

  15. R. Jóhannsson, M. Almgren, and J. Alsins, J. Phys. Chem. 95, 3819 (1991).

    Google Scholar 

  16. B. Boddenberg and W. Horstmann, Ber. Bunsenges. Phys. Chem. 92, 519 (1988).

    Google Scholar 

  17. D.N.L. McGown, G.D. Parfitt, and E. Willis, J. Colloid Sci. 20, 650 (1965).

    Google Scholar 

  18. H. Yotsumoto and R.-H. Yoon, J. Colloid Interface Sci. 157, 426 (1993).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, P., Bartlett, J., Woolfrey, J. et al. Formation and Gelation of Titania Nanoparticles from AOT Reverse Micelles. Journal of Sol-Gel Science and Technology 8, 65–69 (1997). https://doi.org/10.1023/A:1026499004448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026499004448

Navigation