Advertisement

Journal of Applied Electrochemistry

, Volume 27, Issue 1, pp 1–8 | Cite as

Selective electrogenerative oxidation of benzyl alcohol with platinum–graphite packed-bed anodes

  • G. R. DIECKMANN
  • S. H. LANGER
Article

Abstract

The selective electrogenerative oxidation of benzyl alcohol in 1M sulfuric acid solutions was studied on several types of graphite supported platinum packed-bed anodes in a hybrid continuous-flow cell with an oxygen gas diffusion cathode. Benzaldehyde formed preferentially on all three catalytic packed-beds under electrogenerative conditions (Eanode<0.75V) where the platinum catalyst was not irreversibly oxidized. Tin–palladium chloride graphite-pretreatment before platinum deposition through ethanol reduction significantly enhanced catalytic activity. This electrocatalyst provided current densities as high as 77mAcm-2 (superficial packed-bed cross sectional area) with a platinum loading of 0.89wt% Pt on graphite at relative low polarization. The origin of the catalytic activity is discussed and evidence is presented on the roles of tin and palladium. Benzyl alcohol oxidation appears to provide a sensitive probe reaction for demonstrating the existence of special types of catalytic centres.

Keywords

Catalytic Activity Palladium Benzaldehyde Benzyl Alcohol Sulfuric Acid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. D. Tran, I. Londner and S. H. Langer, Electrochim. Acta 38 (1993) 221.Google Scholar
  2. [2]
    T. D. Tran and S. H. Langer, ibid. 38 (1993) 1551.Google Scholar
  3. [3]
    J. C. Card, S. E. Lyke and S. H. Langer, J. Appl. Electrochem. 20 (1990) 269.Google Scholar
  4. [4]
    S. H. Langer, J. C. Card and M. J. Foral, Pure Appl. Chem. 58 (1986) 895.Google Scholar
  5. [5]
    L.-W. H. Leung and M. J. Weaver, Langmuir 6 (1990) 323.Google Scholar
  6. [6]
    N. Batina, B. E. Kahn, C.-H. Lin, J. W. McCargar, G. N. Salaita and A. T. Hubbard, Electroanalysis 1 (1989) 213.Google Scholar
  7. [7]
    O. R. Brown, S. Chandra and J. A. Harrison, J. Electroanal. Chem. Interfacial Electrochem. 38 (1972) 185.Google Scholar
  8. [8]
    O. Hammerich and B. Svensmark, in `Organic Electrochemistry', 3rd edition (edited by H. Lund and M. M. Baizer), Marcel Dekker, New York (1991).Google Scholar
  9. [9]
    J. A. McIntyre and R. F. Philips, US Patent 4 457 953 (1984).Google Scholar
  10. [10]
    J. Lee and S. H. Langer, J. Electrochem. Soc. 139 (1992) 3499.Google Scholar
  11. [11]
    Y. Kunugi, R. Kumada and T. Nonaka, J. Electroanal. Chem. Interfacial Electrochem. 313 (1991) 215.Google Scholar
  12. [12]
    E. A. Mayeda, L. L. Miller and J. F. Wolf, J. Amer. Chem. Soc. 94 (1972) 6812.Google Scholar
  13. [13]
    D. R. Lide (editor-in-chief ), `CRC Handbook of Chemistry and Physics', 74th edn, section 5, CRC Press, Boca Raton FL (1993-1994).Google Scholar
  14. [14]
    T. D. Tran and S. H. Langer, Anal. Chem. 65 (1993) 1805.Google Scholar
  15. [15]
    W. T. Grubb, Proceedings of the 16th Annual Power Sources Conference, 31 (1962).Google Scholar
  16. [16]
    J. D. Voorhies, J. S. Mayell and H. P. Landi, in `Hydrocarbon Fuel Cell Technology' (edited by B. S. Baker), Academic Press, New York (1965).Google Scholar
  17. [17]
    A. J. Bard and L. R. Faulkner, `Electrochemical Methods', John Wiley & Sons, New York (1980), p. 105.Google Scholar
  18. [18]
    K. Asokam and V. Krishnan, Bull. Electrochem. 6 (1990) 449.Google Scholar
  19. [19]
    J. O'M. Bockris and S. U. M. Khan, `Surface Electrochemistry', Plenum Press, New York (1993), pp. 280–3.Google Scholar
  20. [20]
    S. V. Gorbachev and N. R. Rybin, Zh. Fiz. Khim. 41 (1967) 1521.Google Scholar
  21. [21]
    D. Pletcher and N. Tomov, J. Appl. Electrochem. 7 (1977) 501.Google Scholar
  22. [22]
    J.-S. Do and T.-C. Chou, ibid. 22 (1992) 966.Google Scholar
  23. [23]
    P. Cox and D. Pletcher, ibid. 20 (1990) 978.Google Scholar
  24. [24]
    K.-H. G. Brinkhaus, E. Steckhan and W. Schmidt, Acta Chem. Scand. B37 (1983) 499.Google Scholar
  25. [25]
    M. Boudart and G. Djega-Mariadassou, `Kinetics of Heterogeneous Catalytic Reactions', Princeton University Press, Princeton, NJ (1984), pp. 20–5.Google Scholar
  26. [26]
    M. R. Andrew, J. S. Drury, B. D. McNicol, C. Pinnington and R. T. Short, J. Appl. Electrochem. 6 (1976) 99.Google Scholar
  27. [27]
    T. Iwasita-Vielstich, in `Advances in Electrochemical Science and Engineering' (edited by H. Gerischer and C. W. Tobias), Vol. 1, VCH, Weinheim (1990) pp. 159–67.Google Scholar
  28. [28]
    T. Frelink, W. Visscher and J. A. R. van Veen, Electrochim. Acta 37 (1994) 1871.Google Scholar
  29. [29]
    C. L. Sylwan, Energy Conv. 15 (1976) 137.Google Scholar
  30. [30]
    A. N. Haner and P. N. Ross, J. Phys. Chem. 95 (1991) 3740.Google Scholar
  31. [31]
    G. A. Krulik, Platinum Met. Rev. 26 (1982) 58.Google Scholar
  32. [32]
    S. Gobom, Acta Chem. Scand. A 30 (1976) 745.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • G. R. DIECKMANN
    • 1
  • S. H. LANGER
    • 1
  1. 1.Chemical Engineering DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations