Advertisement

Journal of Optimization Theory and Applications

, Volume 107, Issue 2, pp 287–296 | Cite as

Infinite Hierarchical Potential Games

  • L. Mallozi
  • S. Tijs
  • M. Voorneveld
Article

Abstract

Hierarchical potential games with infinite strategy sets are considered. For these games, pessimistic Stackelberg equilibria are characterized as minimum points of the potential function; properties are studied and illustrated with examples.

potential games hierarchical decision making multilevel optimization problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Voorneveld, M., Tijs, S., and Mallozzi, L., Sequential Production Situations and Potentials, Game Practice Book, Edited by F. Patrone, I. Garcia-Jurado, and S. Tijs, Kluwer Academic Publishers, Boston, Massachusetts, 1999.Google Scholar
  2. 2.
    Von Stackelberg, H., Marktform und Gleichgewicht, Springer Verlag, Vienna, Austria, 1934.Google Scholar
  3. 3.
    Chen, C. I., and Cruz, J. B., Stackelberg Solution for Two-Person Games with Biased Information Patterns, IEEE Transactions on Automatic Control, Vol. 23, pp. 166–179, 1997.Google Scholar
  4. 4.
    Basar, T., and Olsder, G. J., Dynamic Noncooperative Games, Academic Press New York, NY, 1995.Google Scholar
  5. 5.
    Vincente, L. N., and Calamai, P. H., Bilevel and Multilevel Programming: A Bibliography Review, Journal of Global Optimization, Vol. 5, pp. 291–306, 1994.Google Scholar
  6. 6.
    Leitmann, G., On Generalized Stackelberg Strategies, Journal of Optimization Theory and Applications, Vol. 26, pp. 637–643, 1978.Google Scholar
  7. 7.
    Fedorov, V. V., and Molodtsov, D. A., Approximation of Two-Person Games withInformation Exchange, USSR Computational Mathematics and Mathematical Physics, Vol. 13, pp. 123–142, 1973.Google Scholar
  8. 8.
    Lignola, M. B., and Morgan, J., Stability of Regularized Bilevel Programming Problems, Journal of Optimization Theory and Applications, Vol. 93, pp. 575–596, 1997.Google Scholar
  9. 9.
    Loridan, P., and Morgan, J., New Results on Approximate Solutions in Two-Level Optimization, Optimization, Vol. 20, pp. 819–863, 1989.Google Scholar
  10. 10.
    Mallozzi, L., and Morgan, J., (-Mixed Strategies for Static Continuous Kernel Stackelberg Problems, Journal of Optimization Theory and Applications, Vol. 78, pp. 303–316, 1993.Google Scholar
  11. 11.
    Monderer, D., and Shapley, L. S., Potential Games, Games and Economic Behavior, Vol. 14, pp. 124–143, 1996.Google Scholar
  12. 12.
    Facchini, G., Van Megen, F., Borm, P., and Tijs, S., Congestion Models and Weighted Bayesian Potential Games, Theory and Decision, Vol. 42, pp. 193–206, 1997.Google Scholar
  13. 13.
    Peleg, B., Potters, J., and Tijs, S., Minimality of Consistent Solutions for Strategic Games, in Particular for Potential Games, Economic Theory, Vol. 7, pp. 81–93, 1996.Google Scholar
  14. 14.
    Voorneveld, M., and Norde, H., A Characterization of Ordinal Potential Games, Games and Economic Behavior, Vol. 19, pp. 235–242, 1997.Google Scholar
  15. 15.
    Voorneveld, M., Equilibria and Appropriate Equilibria in Infinite Potential Games, Economic Letters, Vol. 56, pp. 163–169, 1997.Google Scholar
  16. 16.
    Basar, T., Equilibrium Strategies in Dynamic Games withMultilevels of Hierarchy, Automatica, Vol. 17, pp. 749–754, 1981.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • L. Mallozi
    • 1
  • S. Tijs
    • 2
  • M. Voorneveld
    • 3
  1. 1.Dipartimento di Matematica e ApplicazioniUniversità di Napoli Federico IINapoliItalia
  2. 2.Department of Econometrics and CentERTilburg UniversityTilburgNetherlands
  3. 3.Department of Econometrics and CentERTilburg UniversityTilburgNetherlands

Personalised recommendations