Journal of Applied Electrochemistry

, Volume 27, Issue 1, pp 9–17 | Cite as

Fibrous metal–carbon composite structures as gas diffusion electrodes for use in alkaline electrolyte

  • S. AHN


The fabrication of novel fibre composite electrode structures and the performance assessments for oxygen reduction in alkaline electrolyte is reported. An array of 2μm diameter activated carbon fibres interlocked within a network of 2μm sinter-bonded metal fibres to form the composite structure was used. The resulting electrode structure is stable, highly conductive and can maintain void fraction exceeding 95%. Electrode physical properties including thickness, macroporosity, volume and mass fractions of constituent carbon and metal fibres have been controlled, characterized, and related to the electrode polarization in a KOH half cell. Comparisons have been made with a commercial Teflon-bonded gas diffusion electrode (GDE). It has been demonstrated that this novel method allows reproducible and low-cost fabrication of GDEs with the optimal balance between macropores for gas access, micropores for liquid access, and conductive paths for electron access.


Activate Carbon Carbon Fibre Composite Structure Void Fraction Composite Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. J. Appleby and F. R. Foulkes, `Fuel Cell Handbook', Van Nostrand Reinhold, New York (1989) p. 357.Google Scholar
  2. [2]
    E. L. Littauer and J. F. Cooper, in `Handbook of Batteries and Fuel Cells' (edited by D. Linden), McGraw-Hill, New York (1984) pp. 30–1.Google Scholar
  3. [3]
    M. R. Tarasevich and E. I. Khrushcheva, in `Modern Aspects of Electrochemistry' (edited by B. E. Conway, J. O'M Bockris and R. E. White), No. 19, Plenum Press, New York (1989) p. 295.Google Scholar
  4. [4]
    A. J. Bard and L. R. Faulkner, `Electrochemical Methods; Fundamentals and Applications', John Wiley & Sons, New York (1980) Chap. 3.Google Scholar
  5. [5]
    K. Kinoshita, `Carbon: Electrochemical and Physicochemical Properties', John Wiley & Sons, New York (1988) Chap. 5.Google Scholar
  6. [6]
    D. A. Kohler, J. N. Zabasajja, A. Krishnagopalan and B. J. Tatarchuk, J. Electrochem. Soc. 137 (1990) 136.Google Scholar
  7. [7]
    D. A. Kohler, J. N. Zabasajja, F. Rose and B. J. Tatarchuk, ibid. 137 (1990) 1750.Google Scholar
  8. [8]
    B. J. Tatarchuk, M. F. Rose, A. Krishnagopolan and D. A. Kohler, US Patent 5 080 963 (1992).Google Scholar
  9. [9]
    B. J. Tatarchuk, US Patent 5 096 663 (1992).Google Scholar
  10. [10]
    B. J. Tatarchuk, M. F. Rose and A. Krishnagopolan, US Patent 5 102 745 (1992).Google Scholar
  11. [11]
    J. O'M. Bockris and S. Srinivasan, `Fuel Cells: Their Electrochemistry', McGraw-Hill, New York (1969) Chap. 8.Google Scholar
  12. [12]
    S. F. Bender and J. W. Cretzmeyer, in `Handbook of Batteries and Fuel Cells', op. cit., pp. 7–10.Google Scholar
  13. [13]
    R. J. Brodd, in `Handbook of Batteries and Fuel Cells', op. cit., pp. 17–20.Google Scholar
  14. [14]
    S. Ahn, PhD dissertation, Auburn University, DCN.A452 (1992).Google Scholar
  15. [15]
    S. Ahn and B. J. Tatarchuk, J. Electrochem. Soc. 142 (1995) 4169.Google Scholar
  16. [16]
    K. J. Vetter, `Electrochemical Kinetics', Academic Press, New York (1967).Google Scholar
  17. [17]
    Y. Rho, O. Velev, S. Srinivasan and Y. Kho, J. Electrochem. Soc. 141 (1994) 2084.Google Scholar
  18. [18]
    R. Holze and W. Vielstich, Electrochim. Acta 29 (1984) 607.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • S. AHN
    • 1
    • 1
  1. 1.Department of Chemical Engineering and the Space Power InstituteAuburn UniversityUSA

Personalised recommendations