Journal of Applied Electrochemistry

, Volume 33, Issue 11, pp 1069–1075 | Cite as

Electrochemical study and complete factorial design of Toluidine Blue immobilized on SiO2/Sb2O3 binary oxide

  • E.S. Ribeiro
  • S.L.P. Dias
  • S.T. Fujiwara
  • Y. GushikemEmail author
  • R.E. Bruns


SiO2/Sb2O3 of specific surface area SBET = 788 m2 g−1 and 4.7 wt % of Sb was prepared by the sol–gel method. Toluidine Blue (TB+) was immobilized on SiO2/Sb2O3 by ion exchange reactions and the amount of dye bonded to the substrate surface was 13.72 μmol g−1 for SiO2/Sb2O3. This material was used to modify carbon paste electrodes and the electrochemical properties of Toluidine Blue (TB+) immobilized on a silica surface modified with antimonium trioxide were investigated by cyclic voltammetry. The electron mediator property of toluidine blue was optimized using a factorial design, consisting of four factors each at two levels. Factorial analysis was carried out by searching for better reversibility of the redox process, that is, the lowest separation between anodic and cathodic peak potentials and a current ratio near unity. The aqueous phase pH does not appear to influence the peak separation, ΔE, and the |Ipa//Ipc| current ratio response. The other factors studied, the scan rate, type of electrolyte and electrolyte concentration are important for this chemically modified electrode system demonstrating significant influences on the reversibility of electron transfer. The experimental observations and data analyses on this system indicate that the smallest peak separation occurs using 20 mV s−1 and 1.0 mol L−1 KCl while values of |Ipa//Ipc| close to unity are found for 20 mV s−1 with 1.0 mol L−1 concentrations of either KCl or CH3COONa. The electrodes presented reproducible responses and were chemically stable for various oxidation-reduction cycles.

antimonium oxide carbon paste electrode factorial design sol–gel process Toluidine Blue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Zaitseva, Y. Gushikem, E.S. Ribeiro and S.S. Rosatto, Electrochim. Acta 47 (2002) 1469.Google Scholar
  2. 2.
    X.T. Gao, J.L.G. Fierro and I.E. Wachs, Langmuir 15 (1999) 3169.Google Scholar
  3. 3.
    V. Menon, V.T. Popa, C. Contescu and J.A. Schwarz, Rev. Roum. Chim. 43 (1998) 393.Google Scholar
  4. 4.
    J.M. Miller and L.J. Lakshmi, J. Phys. Chem. B 102 (1998) 6465.Google Scholar
  5. 5.
    H. Kochkar and F. Figueras, J. Catal. 171 (1997) 420.Google Scholar
  6. 6.
    D.C.M. Dutoit, M. Schneider, P. Fabrizioli and A. Baiker, J. Mater. Chem. 7 (1997) 271.Google Scholar
  7. 7.
    A.M. Castellani and Y. Gushikem, J. Colloid Interface Sci. 230 (2000) 195.Google Scholar
  8. 8.
    J.E. Gonçalves, Y. Gushikem and S.C. de Castro, J. Non-Cryst. Solids 260 (1999) 125.Google Scholar
  9. 9.
    A. Walcarius, Electroanalysis 10 (1998) 1217.Google Scholar
  10. 10.
    C.U. Ferreira, Y. Gushikem and L.T. Kubota, J. Solid State Electr. 4 (2000) 298.Google Scholar
  11. 11.
    H. Galip, H. Hasipoglu and G. Gunduz, J. Appl. Polym. Sci. 74 (1999) 2906.Google Scholar
  12. 12.
    H. Sato, K. Kondo, S. Tsuge, H. Ohtani and N. Sato, Polym. Degrad. Stabil. 62 (1998) 41.Google Scholar
  13. 13.
    H.C. Jung, W.N. Kim, C.R. Lee, K.S. Suh and S.R. Kim, J. Polym. Eng. 18 (1998) 115.Google Scholar
  14. 14.
    P. Carty and W. White, Polym. Degrad. Stabil. 47 (1995) 305.Google Scholar
  15. 15.
    M. Nalin, M. Poulain, S.J.L. Ribeiro and Y. Messaddeq, J. Non-Cryst. Solids 284 (2001) 110.Google Scholar
  16. 16.
    U.A. Schubert, F. Anderle, J. Spengler, J. Zuhlke, H.J. Eberle, R.K. Grasselli and H. Knozinger, Top. Catal. 15 (2001) 195.Google Scholar
  17. 17.
    J.H. Youk, R.P. Kambour and W.J. MacKnight, Macromolecules 33 (2000) 3594.Google Scholar
  18. 18.
    H.F. Zanthoff, W. Grunert, S. Buchholz, M. Heber, L. Stieveno, F.E. Wagner and G.U. Wolf, J. Mol. Catal. A-Chem. 162 (2000) 435.Google Scholar
  19. 19.
    V.P. Vislovskiv, V.Y. Bychkov, M.Y. Siney, N.T. Shamilov, P. Ruiz and Z. Schay, Catal. Today 61 (2000) 325.Google Scholar
  20. 20.
    C. Janardanan and S.M.K. Nair, Indian J. Chem. 31A (1992) 136.Google Scholar
  21. 21.
    C. Janardanan and S.M.K. Nair, Analyst 115 (1990) 85.Google Scholar
  22. 22.
    L.T. Kubota, F. Gouveia, A.N. Andrade, B.G. Milagres and G. Oliveira Neto, Electrochim. Acta 41 (1996) 1465.Google Scholar
  23. 23.
    E.F. Perez, G. Oliveira Neto and L.T. Kubota, Sensors Actuators B 72 (2001) 80.Google Scholar
  24. 24.
    J.M. Ottaway, in A.J. Bard (Ed.), ‘Indicators’ (Pergamon, Oxford, 1972), pp. 469-529.Google Scholar
  25. 25.
    L. Gorton, A. Tortensson, H. Jaegfeldt and G. Johansson, J. Electroanal. Chem. 161 (1984) 103.Google Scholar
  26. 26.
    Q. Chi and S. Dong, Electroanalysis 7 (1995) 147.Google Scholar
  27. 27.
    A. Malinauskas, T. Ruzgas and L. Gorton, J. Electroanal. Chem. 484 (2000) 55.Google Scholar
  28. 28.
    C.A. Pessoa, Y. Gushikem, L.T. Kubota and L. Gorton, J. Electroanal. Chem. 431 (1997) 23.Google Scholar
  29. 29.
    C.A. Pessoa, Y. Gushikem and L.T. Kubota, Electroanalysis 9 (1997) 800.Google Scholar
  30. 30.
    A. Walcarius, Electroanalysis 13 (2001) 701.Google Scholar
  31. 31.
    B. de Barros Neto, I.S. Scarminio and R.E. Bruns, in ‘Como fazer experimentos: Pesquisa e Desenvolvimento na Ciência e na IndÚstria’, (Editora da UNICAMP, Campinas-SP, Brazil, 2001).Google Scholar
  32. 32.
    G.E.P. Box, W.G. Hunter and J.S. Hunter, ‘Statistics for experiments’, (Wiley, New York, 1978).Google Scholar
  33. 33.
    ‘Statistica for Windows’, VERSION 5.0 (Statsoft, Inc., Tulsa, OK, 1995).Google Scholar
  34. 34.
    A.A. Ensofi, T. Khayamian and B. Hemmateenejad, Anal. Lett. 32 (1999) 111.Google Scholar
  35. 35.
    R.F. Rocha, S.S. Rosatto, R.E. Bruns and L.T. Kubota, J. Electroanal. Chem. 433 (1997) 73.Google Scholar
  36. 36.
    M.E.P. Hows, D. Perrett and J. Kay, J. Chromatogr. A. 768 (1997) 97.Google Scholar
  37. 37.
    P.J. Goodhew and F.J. Humphreys, ‘Electron Microscopy and Analysis’, 2nd edn (Taylor & Francis, London, 1992).Google Scholar
  38. 38.
    J.A. Bearden, Ver. Mod. Phys. 39 (1967) 78.Google Scholar
  39. 39.
    L. Antonov, G. Gergov, V. Petrov, M. Kubista and J. Nygren, Talanta 49 (1999) 99.Google Scholar
  40. 40.
    D.D. Schlereth and A.A. Karyakin, J. Electroanal. Chem. 395 (1995) 221.Google Scholar
  41. 41.
    P.D. Atkins, ‘Physical Chemistry’, 6th edn (OUP, Oxford, 1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • E.S. Ribeiro
    • 1
  • S.L.P. Dias
    • 1
  • S.T. Fujiwara
    • 1
  • Y. Gushikem
    • 1
    Email author
  • R.E. Bruns
    • 1
  1. 1.Instituto de Química, UnicampCampinas, SPBrazil

Personalised recommendations