Advertisement

Journal of Applied Electrochemistry

, Volume 33, Issue 11, pp 1063–1068 | Cite as

Hydrophobic interfacing layers for improvement of corrosion protection by polymeric coatings

  • S-Y. ZhangEmail author
  • Y. Kong
  • Z-S. Zhang
  • X-Y. Zhang
Article

Abstract

Water sorption of coating materials is the main cause of coating deterioration, adhesion loss and substrate corrosion. By introducing alkanethiol self-assembled monolayers (SAMs), a hydrophobic interfacing layer between coating and substrate metal can be constructed. The effect of the hydrophobic SAMs interfacing layer on the corrosion protection of epoxy coatings was evaluated using electrochemical techniques including Tafel polarization, electrochemical impedance spectroscopy and impedance–time transition measurement. It was found that the SAMs interfacing layer improved the corrosion protection of the coating significantly. The improvement was attributed to the strong interaction between SAMs and the metal substrate, the compact structure and low water affinity of the SAMs interfacing layer, which prevent water absorbed by the coating from reaching the coating–metal interface and spreading along the interface.

corrosion protection interfacial layer polymeric coating self-assembled monolayer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.G. Schmidt and J.P. Bell, in K. Dusek (Ed.), ‘Advance in Polymer Science’, Epoxy Resins and Composites II (Springer-Verlag, New York, 1986), pp. 33-71.Google Scholar
  2. 2.
    S-Y. Zhang, X-W. Luo, S-J. Li and W-F. Zhou, Huaxue Tongbao 8 (1997) 31.Google Scholar
  3. 3.
    M.C. Lee and N.A. Peppas,Prog. Polym. Sci. 18 (1993) 947.Google Scholar
  4. 4.
    P. Moy and F.E. Karasz, Polym. Eng. Sci. 20 (1980) 315.Google Scholar
  5. 5.
    P. Nogueira, C. Ramirez, A. Torres, M.J. Abad, J. Cano, J. Lopez, I. Lopez-Bueno and L. Barral, J. Appl. Polym. Sci. 80 (2001) 71.Google Scholar
  6. 6.
    E.P.M. van Westing, G.M. Ferrari and J.H.W. De Wit, Electrochim. Acta 39 (1994) 899.Google Scholar
  7. 7.
    E.P.M. van Westing, G.M. Ferrari and J.H.W. De Wit, Corros. Sci. 36 (1994) 957.Google Scholar
  8. 8.
    D.J. Belton, E.A. Sullivan and M.J. Molter, in J.H. Lupinski and R.S. Moore (Eds.), ‘Polymeric Materials for Electronics Packaging and Interconnection’, ACS symposium Series 407 (American Chemical Society, Washington, DC, 1989), p. 286-320.Google Scholar
  9. 9.
    Z.R. Xu and K.H.G. Ashbee, J. Compos. Mater. 25 (1991) 760.Google Scholar
  10. 10.
    T.C. Wong and L.J. Broutman, Polym. Eng. Sci. 25 (1985) 529.Google Scholar
  11. 11.
    F. Mansfeld, J. Appl. Electrochem. 25 (1995)187.Google Scholar
  12. 12.
    F. Mansfeld, L.T. Han, C.C. Lee and G. Zhang, Electrochim. Acta 43 (1998) 2933.Google Scholar
  13. 13.
    R.D. Armstrong, J.D. Wright and T.M. Handyside, J. Appl. Electrochem. 22 (1992) 795.Google Scholar
  14. 14.
    R.D. Armstrong and J.D. Wright, Electrochim. Acta 38 (1993) 1799.Google Scholar
  15. 15.
    Y-H. Chen, S-J. Li, C. Pu and W-F. Zhou, Acta Chimica Sinica 53 (1995) 328.Google Scholar
  16. 16.
    V.B. Gupta, L.T. Drzal and M.J. Rich, J. Appl. Polym. Sci. 30 (1985) 4467.Google Scholar
  17. 17.
    T. Suzuki, Y. Oki, M. Numajiri, T. Miura, K. Konda, Y. Shimoni and Y. Ito, Polymer 37 (1996) 3025.Google Scholar
  18. 18.
    M.T. Aronhime, X. Peng, J.K. Gillham and R.D. Small, J. Appl. Polym. Sci. 32 (1986) 3589.Google Scholar
  19. 19.
    J.B. Enns and J.K. Gillhan, J. Appl. Polym. Sci. 28 (1983) 2831.Google Scholar
  20. 20.
    X-W. Luo, Z-Y. Yun, S-J. Li and W-F. Zhou, Macromol. Rapid Commun. 16 (1995) 941.Google Scholar
  21. 21.
    S-Y. Zhang, PhD thesis, Fudan University, Shanghai (1998).Google Scholar
  22. 22.
    P.H. Pfromm and W.J. Koros, Polymer 36 (1995) 2379.Google Scholar
  23. 23.
    X-W. Luo, Z-H. Ping, J-P. Ding, Y-D. Ding and S-J. Li, J. Macromol. Sci. A 34 (1997) 2279.Google Scholar
  24. 24.
    S-J. Li, S-Y. Zhang, X-W. Luo, Y-F. Ding and W-F. Zhou, Chem. J. Chinese Univs. 21 (2000) 813.Google Scholar
  25. 25.
    S. Nakamura, Y. Saegusa, H. Yanagisawa, M. Touse, T. Shirai and T. Nishikubo, Thermochim. Acta 183 (1991) 269.Google Scholar
  26. 26.
    S. Nakamura and M. Arima, J. Thermal Analy. 40 (1993) 613.Google Scholar
  27. 27.
    M. Arina, H. Ibe and S. Nakamura, Report on Progress in Polym. Phys. Jpn. 36 (1993) 267.Google Scholar
  28. 28.
    S-Y. Zhang, X-W. Luo, S-J. Li and W-F. Zhou, Acta Chimica Sinica 57 (1999) 329.Google Scholar
  29. 29.
    S-Y. Zhang, X-W. Luo, S-J. Li and W-F. Zhou, Corros. Sci. 42 (2000) 2037.Google Scholar
  30. 30.
    S-Y. Zhang, Y-F. Ding, S-J. Li, X-W. Luo and W-F. Zhou, Corros. Sci. 44 (2002) 861.Google Scholar
  31. 31.
    M. Vecellio, Prog. Organic Coat. 40 (2000) 225.Google Scholar
  32. 32.
    F. Deflorian, L. Fedrizzi, D. Lenti and P.L. Bonora, Prog. Organic Coat. 22 (1993) 39.Google Scholar
  33. 33.
    F. Deflorian, L. Fedrizzi and P.L. Bonora, Prog. Organic Coat. 23 (1993) 73.Google Scholar
  34. 34.
    V.E. Miskovic-Stankovic, F. Deflorian, P.L. Bonora and L. Fedrizzi, Prog. Organic Coat. 24 (1994) 253.Google Scholar
  35. 35.
    Y. Feng, W-K. Teo, K-S. Siow, Z. Gao, K-L. Tan and A-K. Hsieh, J. Electrochem. Soc. 144 (1997) 55.Google Scholar
  36. 36.
    D. Taneichi, R. Haneda and K. Aramaki, Corros. Sci. 43 (2001) 1589.Google Scholar
  37. 37.
    Z-L. Quan, S-H. Chen and S-L. Li, Corros. Sci. 43 (2001) 1071.Google Scholar
  38. 38.
    A. Ulman, Chem. Rev. 96 (1996) 1533.Google Scholar
  39. 39.
    E.P.M. van Westing, G.M. Ferrari, F.M. Geenen and J.H.W. de Wit, Prog. Organic Coat. 23 (1993) 89.Google Scholar
  40. 40.
    E.P.M. van Westing, G.M. Ferrari and J.H. W. de Wit, Corros. Sci. 36 (1994) 979.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShandong UniversityJinanP.R. China

Personalised recommendations