Advertisement

Positivity

, Volume 7, Issue 3, pp 149–159 | Cite as

Convergence for Sequences of Functions and an Egorov Type Theorem

  • N. Papanastassiou
  • P. Kiriakouli
Article
  • 76 Downloads

Abstract

For every ordinal ξ<ω1 we define a new type of convergence for sequences of functions (ξ-uniform pointwise) which is intermediate between uniform and pointwise convergence. Using this type of convergence we obtain an Egorov type theorem for sequences of measurable functions.

Keywords

Fourier Analysis Measurable Function Operator Theory Potential Theory Type Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alspach, D. and Argyros, S.: Complexity of weakly null sequences, Dissertations Mathematicae CCCXXI (1992), 1–44.Google Scholar
  2. 2.
    Alspach, D. and Odell: Averaging null sequences, Lectures Notes in Math. 1332, Springer, Berlin 1988.Google Scholar
  3. 3.
    Bartle, R.: An extension of Egorov's theorem,Amer. Math. Monthly 87 (1980), 628–633.Google Scholar
  4. 4.
    Egoroff, D.: (D. Egorov), Sur les suites des fonctions mesurables, Comptes Rendus Acad. Sci. Paris, 152 (1911), 244–246.Google Scholar
  5. 5.
    Kiriakouli, P.: A generalization of classical Ramsey theorem and some applications to Banach spaces theory, submitted.Google Scholar
  6. 6.
    Mercourakis, S.: On Cesaro summable sequences of continuous functions, Mathematica, 42 (1995), 87–104.Google Scholar
  7. 7.
    Mercourakis, S.: On some generalizations of the classical Banach-Saks properties, preprint.Google Scholar
  8. 8.
    Papanastassiou, N. and Kiriakouli, P.: A classification of weakly null sequences, submitted.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • N. Papanastassiou
    • 1
  • P. Kiriakouli
    • 2
  1. 1.Department of MathematicsUniversity of AthensAthensGreece
  2. 2.AthensGreece

Personalised recommendations