Skip to main content
Log in

The use of electrochemical noise measurements to detect bad copper electrorefining conditions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Additives like thiourea, gelatin and chloride are used during copper electrorefining to promote a smooth deposit. However, additives can also facilitate nodule formation when their ratios and/or concentrations are inadequate. A preliminary investigation was conducted to determine if electrochemical noise (EN) measurements could be used to monitor and detect inefficient copper electrorefining conditions due to improper ratios and/or concentrations of additives. EN measurements were carried out in the laboratory under simulated industrial conditions. Galvanostatic experiments were conducted using a synthetic electrolyte containing different concentrations of additives. A 316L SS cathode and industrial copper anodes were used. The effects of three different data acquisition frequencies were also investigated. EN signals obtained as potential time record series were studied using statistical analyses and frequency domain transforms. The different calculated parameters gave similar results for all conditions studied except when additives present in the electrolyte led to nodule formation. Results also showed that the data acquisition frequency must be at least 10 Hz to detect improper ratios and/or concentrations of additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Cheng and J.B. Hiskey, Metall. Trans. B 27B (1998) 53.

    Google Scholar 

  2. C. De Maere and R. Winand, Proceedings of copper 95-cobre 95 International Conference, Vol. III - Electrorefining and Hydrometallurgy of copper (1995) pp. 267-284.

    Google Scholar 

  3. O. Forsen, Copper ’90 Refining, fabrication, markets (1990) pp. 189-197.

  4. D.F. Suarez and F.A. Olson, J. Appl. Electrochem. 22 (1992) 1002.

    Google Scholar 

  5. E. Ilgar, Ph.D. Thesis, University of Missouri (1993) pp. 53- 117.

  6. B. Veilleux, A.-M. Lafront and E. Ghali, Can. Metall. Quart. 40 (2001) 343.

    Google Scholar 

  7. B. Veilleux, A.-M. Lafront and E. Ghali, Can. Metall. Quart. 41 (2002) 47.

    Google Scholar 

  8. B. Veilleux, Ph.D. Thesis, Laval University (2000).

  9. D.A. Eden, Electrochem. Noise (2000) 1227.

  10. R. Cottis and S. Turgoose, Electrochem. Impedance Noise (2000).

  11. A.-M. Lafront, B. Veilleux and E. Ghali, J. Appl. Electrochem. (2000) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veilleux, B., Lafront, AM., Ghali, E. et al. The use of electrochemical noise measurements to detect bad copper electrorefining conditions. Journal of Applied Electrochemistry 33, 1093–1098 (2003). https://doi.org/10.1023/A:1026266432219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026266432219

Navigation