Advertisement

Positivity

, Volume 7, Issue 3, pp 177–183 | Cite as

Second Order Differential-functional Inequalities for Bounded Functions

  • Gerd Herzog
Article
  • 28 Downloads

Abstract

We prove a differential-functional version of the Lemma of Nagumo and Westphal which can be applied to differential-functional inequalities for bounded C-functions on \(\mathbb{R}\) having bounded derivatives. As an application an existence and uniqueness result for bounded solutions of linear second order differential-functional equations is proved.

Keywords

Fourier Analysis Operator Theory Bounded Function Potential Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andres, J., Gabor, G., Górniewicz, L.: Boundary value problems on infinite intervals. Trans. Amer. Math. Soc. 351 (1999), 4861–4903.Google Scholar
  2. 2.
    Kato, T., McLeod, J.B.: The functional-differential equation y(x) = ay(λx) + by(x). Bull. Amer. Math. Soc. 77 (1971), 891–937.Google Scholar
  3. 3.
    Nickel, K.: Das Lemma von Max Müller-Nagumo-Westphal für stark gekoppelte Systeme parabolischer Funktional-Differentialgleichungen.Math. Z. 161 (1978), 221–234.Google Scholar
  4. 4.
    Uhl, R.: Ordinary differential inequalities and quasimonotonicity in ordered topological vector spaces.Proc. Amer. Math. Soc. 126 (1998), 1999–2003.Google Scholar
  5. 5.
    Voigt, W.: Nonlinear parabolic differential-functional inequalities with boundary-functional conditions.Beitr. Anal. 18 (1981), 85–89.Google Scholar
  6. 6.
    Volkmann, P.: Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen.Math. Z. 127 (1972), 157–164.Google Scholar
  7. 7.
    Walter, W.: Differential-und Integralungleichungen. Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, 1964.Google Scholar
  8. 8.
    Wilansky, A.: Modern Methods in Topological Vector Spaces.McGraw-Hill, New York, 1978.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Gerd Herzog
    • 1
  1. 1.Mathematisches Institut IUniversität KarlsruheKarlsruheGermany

Personalised recommendations