Advertisement

Journal of Applied Electrochemistry

, Volume 33, Issue 11, pp 1049–1055 | Cite as

Electrochemical decomposition of ppb level trihalomethane in tap water

  • N. SonoyamaEmail author
  • S. Seike
  • T. Sueoka
  • T. Sakata
Article

Abstract

Continuous decomposition of ppb level halocarbons in tap water using an electrochemical method was attempted. Using a flow cell in which electrical contact with the column-type Ag impregnated activated carbon electrode was improved, the concentration of chloroform in tap water decreased to about 1 ppb. The concentration of other halocarbons also decreased to below ppb levels. Using a two-stage treatment, the concentration of chloroform decreased to below the ppb level.

column-type electrode continuous electrochemical decomposition ppb level halocarbons tap water trihalomethanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Lloyd, R.M. Jr. Moore and P. Breslin, J. Occup. Med. 17 (1975) 603.Google Scholar
  2. 2.
    M.P. Strier, Environ. Sci. Technol. 14 (1980) 28.Google Scholar
  3. 3.
    J.J. Rook, Water Treat. Exam. 23 (1974) 234.Google Scholar
  4. 4.
    S.W.J. Lagakos, B. Wessen and M. Zelen, J. Am. Statist. Assoc. 81 (1986) 583.Google Scholar
  5. 5.
    A.L. Pruden and D.F. Ollis, Environ. Sci. Technol. 17 (1983) 628.Google Scholar
  6. 6.
    W.H. Glaze, J.F. Kenneke and J.L. Ferry, Environ. Sci. Technol. 27 (1993) 177.Google Scholar
  7. 7.
    M. Martino, R. Rosal, H. Sastre and F.V. Díez, Appl. Catal. B Environ. 20 (1999) 301.Google Scholar
  8. 8.
    L.P. Wackett and D.T. Gibson, Appl. Environ. Microbiol. 54 (1988) 1703.Google Scholar
  9. 9.
    R.B. Winter, K-M. Yen and B.D. Ensley, Biotechnol. 7 (1989) 282.Google Scholar
  10. 10.
    S. Nishimoto, H. Hatta, H. Fu, T. Atsumi and T. Kagiya, Jpn. J. Water Pollut. Res. 11 (1988) 107.Google Scholar
  11. 11.
    A.M. Polcaro and S. Palmas, Ind. Eng. Chem. Res. 36 (1997) 1791.Google Scholar
  12. 12.
    N. Sonoyama, K. Hara and T. Sakata, Chem. Lett. (1997) 131.Google Scholar
  13. 13.
    N. Sonoyama and T. Sakata, Environ. Sci. Technol. 33 (1999) 3438.Google Scholar
  14. 14.
    N. Sonoyama, K. Ezaki and T. Sakata, Adv. Environ. Res. 6 (2001) 1.Google Scholar
  15. 15.
    H. Aoyagi, Z. Yoshida and S. Kihara, Anal. Chem. 59 (1987) 400.Google Scholar
  16. 16.
    F. Kusu, H. Tamanouchi, T. Sato, K. Arai, K. Takamura and T. Sueoka, Denki Kagaku 65 (1997) 51.Google Scholar
  17. 17.
    K. Hara and T. Sakata, Bull. Chem. Soc. Jpn. 70 (1997) 571.Google Scholar
  18. 18.
    N. Hoshi, M. Kato and Y. Hori, J. Electroanal. Chem. 440 (1997) 283.Google Scholar
  19. 19.
    N. Hoshi, T. Suzuki and Y. Hori, J. Phys. Chem. B 101 (1997) 8520.Google Scholar
  20. 20.
    M.O. Iwunze and J.F. Rusling, J. Electroanal. Chem. 266 (1989) 197.Google Scholar
  21. 21.
    R.K. Kvaratskheliya, Seriya Khimicheskaya 2 (1976) 140.Google Scholar
  22. 22.
    A. Terblanche, Water SA 17 (1991) 77.Google Scholar
  23. 23.
    K. Bouzek, M. Paidar, A. Sadílková and H. Bergmann, J. Appl. Electrohem. 31 (2001) 1185.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyMidori-ku, YokohamaJapan
  2. 2.Material & Device Research DepartmentInstitute of Laboratory, Meidensha CorporationOhsaki 2-Chome, Shinagawa-ku, TokyoJapan
  3. 3.Hokuto Denko, Atsugi factorytsugiJapan

Personalised recommendations