Journal of Applied Electrochemistry

, Volume 33, Issue 11, pp 1077–1084 | Cite as

Electrodeposition of antimony in a water-stable 1-ethyl-3-methylimidazolium chloride tetrafluoroborate room temperature ionic liquid

  • M-H. Yang
  • I-W. SunEmail author


The electrochemistry and electrodeposition of antimony were investigated on glassy carbon and nickel electrodes in a basic 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate room temperature ionic liquid. Cyclic voltammetry results show that Sb(III) may be either oxidized to Sb(V) via a quasi-reversible charge-transfer process or reduced to Sb metal. Diffusion coefficients for both Sb(III) and Sb(V) species were calculated from rotating disc voltammetric data. Analysis of chronoamperometric current–time transients indicates that the electrodeposition of Sb on glassy carbon proceeded via progressive three-dimensional nucleation with diffusion-controlled growth of the nuclei. Raising the deposition temperature results in decreased average radius of the individual nuclei. Dense deposits can be obtained within a deposition temperature range between 30 to 120 °C. Scanning electron microscopy revealed dramatic changes in the surface morphology of antimony electrodeposits as a function of deposition temperature; deposits obtained at 30 °C had a nodular appearance whereas those obtained at 80 and 120 °C consisted of evenly distributed fine polygonal crystals.

antimony electrodeposition imidazolium chloride ionic liquid tetrafluoroborate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S.Wilkes,J.A.Levisky,R.A.Wilson and C.L.Hussey,Inorg.Chem 21 (1982)1263.Google Scholar
  2. 2.
    M.J. Earl and K.R. Seddon, Pure Appl. Chem. 72 (2000) 1391.Google Scholar
  3. 3.
    C.L. Hussey, in G. Mamantov and A.I. Popov (Eds), ‘Chemistry of Nonaqueous Solutions Current Progress’ (VCH, New York, 1994), p. 227.Google Scholar
  4. 4.
    R.T. Carlin and J.S. Wilkes, in G. Mamantov and A.I. Popov, op. cit. [3], p. 277.Google Scholar
  5. 5.
    G.R. Stafford and C.L. Hussey, in R.C. Alkire and D.M. Kolb (Eds), ‘Advances in Electrochemical Science and Engineering’, Vol. 7 (Wiley-VCH, 2001), p. 275.Google Scholar
  6. 6.
    J.S. Wilkes and M.J. Zaworotko, J. Chem. Soc. Chem. Commum. (1992) 965.Google Scholar
  7. 7.
    E.I. Cooper and E.J.M. O’Sullivan, in R.J. Gale, G. Blomgren and H. Kojima (Eds), ‘Molten Salts’ PV 92-16 (Electrochemical Society Proceedings Series, Pennington, NJ, 1992), p. 386.Google Scholar
  8. 8.
    Y.N. Sadana, J.P. Singh and R. Kumar, Surf. Technol. 24 (1985) 319.Google Scholar
  9. 9.
    A. Brenner, ‘Electrodeposition of Alloys, Principles and Practice’ (Academic, New York, 1963).Google Scholar
  10. 10.
    D.A. Habboush and R.A. Osteryoung, Inorg. Chem. 23 (1984) 1726.Google Scholar
  11. 11.
    M. Lipsztjan and R.A. Osteryoung, Inorg. Chem. 24 (1985) 3492.Google Scholar
  12. 12.
    P-Y. Chen and I-W. Sun, Electrochim. Acta 45 (1999) 441.Google Scholar
  13. 13.
    P-Y. Chen and I-W. Sun, Electrochim. Acta 45 (2000) 3163.Google Scholar
  14. 14.
    A. Bard and L.R. Faulkner, ‘Electrochemical Methods’ (Wiley, New York, 1980).Google Scholar
  15. 15.
    C.L. Hussey, I-W. Sun, S.K.D. Strubinger and P.A. Barnard, J. Electrochem. Soc. 137 (1990) 2515.Google Scholar
  16. 16.
    T. Vargas and R. Varma, in R. Varma and J.R. Selman (Eds), ‘Techniques for Characterization of Electrodes and Electrochemical Processes’ (J. Wiley & Sons, New York, 1991), chapter 5.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of ChemistryNational Cheng-Kung UniversityTainan, TaiwanROC

Personalised recommendations