Advertisement

Journal of Applied Electrochemistry

, Volume 33, Issue 11, pp 989–993 | Cite as

Neutralization of used Li batteries: Anodic dissolution of the iron–nickel alloy positive pins of Li–SOCl2 batteries in seawater

  • E. Zinigrad
  • Y. Gofer
  • D. Aurbach
  • P. Dan
Article
  • 107 Downloads

Abstract

This paper reports a study of the neutralization of Li–SOCl2 batteries. Immersion of these batteries in acidic seawater solutions leads to their complete discharge by short circuit, followed by corrosion of the positive pin (made of an Fe/Ni alloy). This corrosion process is desirable because it allows penetration of water into the battery, and hence, neutralization of the active mass of the batteries through their reaction with water. The most efficient corrosion of Fe/Ni electrodes is obtained in seawater containing both HCl and H2SO4 in a situation of no separation between the electrode compartments, due to the reaction of the H2 liberated at the cathode with the surface films on the anode (Fe/Ni pin electrodes). This reaction prevents passivation of the positive pin. Indeed, used Li–SOCl2 batteries whose insulating covers were removed, corroded much quicker than regular batteries because of the impact of H2 evolved at the case (the negative pole of the battery) on the dissolution of the positive pin.

anodic dissolution anodic passivation Fe/Ni alloy Li batteries neutralization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    TREDI’s patent: 2 796 206, Registration no. 9908800.Google Scholar
  2. 2.
    A. Kumar, S.K. Patnaik and M.M. Singh, Bull. Electrochem. 14 (1998) 246.Google Scholar
  3. 3.
    B. Mazurkiewicz, Metall. Foundry Eng. 23 (1997) 215.Google Scholar
  4. 4.
    R.P. Galdikiene and A.V. Petrauskas, Prot. Met. (Transl. of Zashch. Met.) 31 (1995) 525.Google Scholar
  5. 5.
    R.E. Hummel and R.J. Smith, Corros. Sci. 30 (1990) 849.Google Scholar
  6. 6.
    J. Banas, Electrochim. Acta 32 (1987) 871.Google Scholar
  7. 7.
    M.S. Abdel-Aal and A.A. Hermans, J. Appl. Electrochem. 30 (2000) 339.Google Scholar
  8. 8.
    E. Li, M. Ji, M. Ma, X. Liux and P. Xu, Wuli Huaxue Xuebao 11 (1995) 1031.Google Scholar
  9. 9.
    K. Masamura and T. Nishimura, Boshoku Gijutsu 37 (1988) 546.Google Scholar
  10. 10.
    F. Wengep and J. Galland, in F. Michel (Ed), Proceedings of the 5th International Symposium on ‘Passivity in Metal Semiconductors’ (Elsevier, Amsterdam, 1983), p. 649.Google Scholar
  11. 11.
    P. Pothiaux, F. Wenger and J. Galland, C. R. l’Academie Sci., Ser. II Univers 312 (1991) 1303.Google Scholar
  12. 12.
    Y.M. Z eng, L.J. Qiao, M.Z. Yang and W.Y. Chu, Zhongguo Fushi Yu Fanghu Xuebao 19 (1999) 321.Google Scholar
  13. 13.
    V.I. Arkharov, A.K. Varskaya, M.G. Zhuravleva and G.I. Chufarov, Doklady Akad. Nauk S.S.S.R. 87 (1952) 49.Google Scholar
  14. 14.
    J. Moreau and J. Bénard, Compt. Rend. 237 (1953) 1417.Google Scholar
  15. 15.
    J. Moreau and J. Bénard, Pubs. Inst. Recherches sidérurgie 109 (1955) 3.Google Scholar
  16. 16.
    H.J. Yearian, E.C Randell and T.A. Longo, Corrosion 12 (1956 515t.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • E. Zinigrad
    • 1
  • Y. Gofer
    • 1
  • D. Aurbach
    • 1
  • P. Dan
    • 2
  1. 1.Department of ChemistryBar-Ilan UniversityRamat-GanIsrael
  2. 2.Tadiran Battery DivisionKiryat EkronIsrael

Personalised recommendations