, Volume 7, Issue 3, pp 235–244 | Cite as

Polynomial Representations via Spectral Decompositions

  • O. Demanze


We show using functional analysis methods, that under some conditions, such as the positivity of a homogeneous polynomial, one can give a representation of polynomials which are positive on semi-algebraic sets, allowing irrational fractions with denominators of the form (1+t21)β1/2 ...(1+t2n)βn/2, βi∈Z+, i = 1, ..., n


Functional Analysis Fourier Analysis Operator Theory Potential Theory Homogeneous Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhiezer, N.I.: The ClassicalMoment Problem, Oliver and Boyd, Edinburgh and London, 1965.Google Scholar
  2. 2.
    Berg, C., Christensen, J.P.R. and Ressel, P.: Harmonic Analysis on Semigroups, Springer, New York/Berlin/Heidelberg/Tokyo, 1984.Google Scholar
  3. 3.
    Bert, C. and Maserick, P.H., Polynomially Positive Definite Sequences Math. Ann. 259 (1982), 487–495.Google Scholar
  4. 4.
    Bochnak, J., Coste, M. and Roy, M.M.: Géométrie algèbrique réelle, Springer, Berlin/ Heidelberg/New York/London/Paris/Tokyo, 1987.Google Scholar
  5. 5.
    Cassier, G.: Problème des moments sur un compact de Rn et decomposition depolynômes à plusieurs variables, J. Funct. Analysis 58 (1984), 254–266.Google Scholar
  6. 6.
    Demanze, O., Moments and positivity, J. Math. Anal. Appl., 247 (2000), 570–587.Google Scholar
  7. 7.
    Dunford, N. and Schwartz, J.T., Linear Operators, Part II, Interscience Publishers, New York/London/Sydney, 1963.Google Scholar
  8. 8.
    Fuglede, B.: The Multidimensional moment problem, Expositiones Mathematicae, 1 (1983), 47–65.Google Scholar
  9. 9.
    Gelfand, I.M. and Naimark, M.A.: On the inclusion of a normed ring into the ring of operators in a Hilbert space (Russian) Matem. Sb. 12 (1943), 197–213.Google Scholar
  10. 10.
    Jacobson, N.: Lectures in Abstract Algebra III, Theory of Fields and Galois Theory, Van Nostrand, Toronto/New York/London, 1975.Google Scholar
  11. 11.
    Putinar, M. Positive Polynomials on Compact Semi-algebraic Sets, Indiana Univ Math. J 42 (1993), 969–984.Google Scholar
  12. 12.
    Putinar, M. and Vasilescu, F.H.: Solving moment problems by dimensional extension, Annals of Math. 149 (1999), 1087–1107.Google Scholar
  13. 13.
    Shafarevich, I.R.: Basic Algebraic Geometry, 1, Springer, Berlin, 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • O. Demanze
    • 1
  1. 1.U.F.R. de mathématiques Pures et AppliquéesUniversité des sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance

Personalised recommendations