Advertisement

Journal of Applied Electrochemistry

, Volume 33, Issue 11, pp 1085–1092 | Cite as

Electrodeposition of Co–Cu alloy coatings from glycinate baths

  • A.E. Mohamed
  • S.M. Rashwan
  • S.M. Abdel-Wahaab
  • M.M. Kamel
Article

Abstract

The cathodic polarization, cathodic current efficiency of codeposition, composition and structure of Co–Cu alloy as a function of bath composition, current density and temperature were studied. Electrodeposition was carried out from solutions containing CuSO4 · 5H2O, CoSO4 · 7H2O, Na2SO4 and NH2CH2COOH. The cathodic current efficiency of codeposition (CCE) was high and it increased with increasing temperature and Cu2+ content in the bath, but it decreased with current density. The codeposition of Co–Cu alloys from these baths can be classified as regular. The Co content of the deposit increased with Co2+ content and current density and decreased with glycine concentration and temperature. The structure of the deposited alloys was characterized by anodic stripping and X-ray diffraction techniques. The data showed that the deposited alloys consisted of a single solid solution phase with a face-centred cubic (f.c.c.) structure.

Co–Cu alloys electrodeposition glycinate baths 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Endoh, T. Otouma and Y. Oda, J. Hydrogen Energy 12 (1987) 473.Google Scholar
  2. 2.
    Ph. Vermeiren, R. Leysen and H. Vandenborre, Electrochim. Acta 30 (1985) 1253.Google Scholar
  3. 3.
    J. Crousier and I. Bimajhra, J. Appl. Electrochem. 23 (1993) 780.Google Scholar
  4. 4.
    J. Horkans, I.C.H Chang, P.C. Andricacos and E.J. Podlaha, J. Electrochem. Soc. 138 (1991) 411.Google Scholar
  5. 5.
    L. Brossard and B.I. Marquis, J. Hydrogen Energy 19 (1994) 231.Google Scholar
  6. 6.
    C.G. Fink and J.L. Hutton, Trans. Electrochem. Soc. 85 (1944) 119.Google Scholar
  7. 7.
    W. Shuisheng, MSc thesis, Laurentian University of Sudbury, Canada (1989).Google Scholar
  8. 8.
    V.I. Kharlamov, O.M. Belous, N.S. Grigoryan, V.V. Terekhova and T.A. Vagramyan, Russ. J. Electrochem. 33(1) (1997) 84.Google Scholar
  9. 9.
    R.L. Anton, M.L. Fdez-Gubieda, A.G. Arribas, J. Herreros and M. Insausti, Mater. Sci. Eng. A 335 (2002) 94.Google Scholar
  10. 10.
    E. Gomez, A. Labarta, A. Llorente and E. Valles, Surf. Coat. Technol. 153 (2002) 251.Google Scholar
  11. 11.
    M. Alper, W. Schwarzacher and S.J. Lane, J. Electrochem. Soc. 144 (1997) 2346.Google Scholar
  12. 12.
    Y. Jyoko, S. Kashiwabara and Y. Hayashi, J. Electrochem. Soc. 144 (1997) L 193 and 2346.Google Scholar
  13. 13.
    J. Xue, J. Wu and D. Yang, Acta Metall. Sin. (China) 10(2) (1997) 115.Google Scholar
  14. 14.
    N. Myung, K.H. Ryu, P.T.A. Sumodojo and K. Nobe, Proc. Electrochem. Soc. 97(27) (1998) 270.Google Scholar
  15. 15.
    P.R. Reddy and V.B. Rao, Polyhedron 4(9) (1985) 1603.Google Scholar
  16. 16.
    A. Brenner, ‘Electrodeposition of Alloys’, Vol. 1 (Academic, New York, 1963).Google Scholar
  17. 17.
    S.S. Abd El-Rehim, N.F. Mohamed, N.H. Amin and L.I. Ali, J. Appl. Electrochem. 27 (1997) 1385.Google Scholar
  18. 18.
    S. Swathirajan, J. Electrochem. Soc. 133 (1986) 671.Google Scholar
  19. 19.
    E. Gomez, J. Ramirez and E. Valles, J. Appl. Electrochem. 28 (1998) 71.Google Scholar
  20. 20.
    S.S. Abd El-Rehim, S.M. Abd El-Wahaab, S.M. Rashwan and Z.M. Anwar,J. Chem. Technol. Biotechnol. 75 (2000) 237.Google Scholar
  21. 21.
    V.M. Lopez-Hirata and E.M. Estrada, Electrochim. Acta 42 (1997) 61.Google Scholar
  22. 22.
    P.E. Bradely and D. Landolt, Electrochim. Acta 45 (1999) 1077.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A.E. Mohamed
    • 1
  • S.M. Rashwan
    • 1
  • S.M. Abdel-Wahaab
    • 1
  • M.M. Kamel
    • 1
  1. 1.Chemistry Department, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt

Personalised recommendations