Pharmaceutical Research

, Volume 20, Issue 10, pp 1523–1532 | Cite as

Mechanism of Binding and Internalization of ICAM-1-Derived Cyclic Peptides by LFA-1 on the Surface of T Cells: A Potential Method for Targeted Drug Delivery

Article

Abstract

Purpose. Peptides derived from the Domain 1 of the adhesion molecule ICAM-11-21 are being developed as targeting ligands for LFA-1 receptors expressed on activated T cells. This work aims to elucidate the binding and internalization of ICAM-1-derived cyclic peptides (cIBL, cIBC, and cIBR) to LFA-1.

Methods. Ninety-six-well plates coated with soluble LFA-1 (sLFA-1) were used to characterize the binding of FITC-labeled peptide. An anti-CD11a antibody to the I-domain of LFA-1 was used to inhibit the binding of these peptides, which was quantified using a fluorescence plate reader. An unrelated FITC-labeled cyclic peptide was used as a negative control, and PE-labeled anti-CD11a antibodies (PE-R3.2 and PE-R7.1) were used as positive controls. Peptide binding to cell surface LFA-1 was visualized using colocalization of FITC-cIBR peptide and PE-labeled anti-CD18 antibody (LFA-1 β-subunit) on SKW-3 T cells by fluorescent microscopy. Inhibition of ICAM-1 binding to LFA-1 by peptides was evaluated using a Biacore assay. Binding and internalization of FITC-labeled peptides were evaluated by flow cytometry and confocal microscopy at 4°C and 37°C.

Results. These FITC-labeled cyclic peptides bind to sLFA-1 and can be blocked by an anti-CD11a antibody to the I-domain, suggesting that their binding site is on the I-domain of LFA-1. The FITC-cIBR peptide was localized with an anti-CD18 antibody on the surface of T cells, indicating that the FITC-cIBR peptide binds to LFA-1 on the cell surface. Flow cytometry and confocal microscopy demonstrated that FITC-labeled peptides were internalized in a temperature-dependent manner. Biacore analysis demonstrated that these peptides did not inhibit sICAM-1 from binding to immobilized sLFA-1. However, the binding properties of the soluble forms of LFA-1 and ICAM-1 may not correlate to their interaction at the cell surface.

Conclusions. Cyclic ICAM-1-derived peptides (cIBL, cIBC, and cIBR) bind to the I-domain of LFA-1 and are internalized by LFA-1 receptors on the surface of T cells. Therefore, these peptides could be used to target and deliver drugs to the cytoplasmic domain of T cells.

ICAM-1 LFA-1 binding internalization T cells targeted drug delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Yusuf-Makagiansar, M. E. Anderson, T. V. Yakovleva, J. S. Murray, and T. J. Siahaan. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 22:146-167 (2002).Google Scholar
  2. 2.
    A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. The immunological synapse: A molecular machine controlling T cell activation. Science 285:221-227 (1999).Google Scholar
  3. 3.
    M. L. Dustin. The immunological synapse. Arthritis Res. 4:S119-S125 (2002).Google Scholar
  4. 4.
    C. R. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82-86 (1998).Google Scholar
  5. 5.
    B. Salomon and J. A. Bluestone. LFA-1 interaction with ICAM-1 and ICAM-2 regulates Th2 cytokine production. J. Immunol. 161:5138-5142 (1998).Google Scholar
  6. 6.
    T. Labuda, J. Wendt, G. Hedlund, and M. Dohlsten. ICAM-1 costimulation induces IL-2 but inhibits IL-10 production in superantigen-activated human CD4+ T cells. Immunology 94:496-502 (1998).Google Scholar
  7. 7.
    M. Isobe, H. Yagita, K. Okumura, and A. Ihara. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 255:1125-1127 (1992).Google Scholar
  8. 8.
    K. Takazawa, Y. Hosoda, H. Bashuda, K. Senio, H. Yagita, T. Tamatani, M. Miyasaka, and K. Okumura. Synergistic effects of mycophenolate mofetil (MMF, RS-61443) and anti-LFA-1/ICAM-1 monoclonal antibodies on the prolongation of heart allograft survival in rats. Transplant. Proc. 28:1980-1981 (1996).Google Scholar
  9. 9.
    F. C. Barouch, K. Miyamoto, J. R. Allport, K. Fujita, S. E. Bursell, L. P. Aiello, F. W. Luscinskas, and A. P. Adamis. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest. Ophthalmol. Vis. Sci. 41:1153-1158 (2000).Google Scholar
  10. 10.
    H. Moriyama, K. Yokono, K. Amano, M. Nagata, Y. Hasegawa, N. Okamoto, K. Tsukamoto, M. Miki, R. Yoneda, N. Yagi, Y. Tominaga, H. Kikutani, K. Hioki, K. Okumura, H. Yagita, and M. Kasug. Induction of tolerance in murine autoimmune diabetes by transient blockade of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 pathway. J. Immunol. 157:3737-3743 (1999).Google Scholar
  11. 11.
    H. Schulze-Koops, P. E. Lipsky, A. F. Kavanaugh, and L. S. Davis. Elevated Th1-or Th0-like cytokine mRNA in peripheral circulation of patients with rheumatoid arthritis. Modulation by treatment with anti-ICAM-1 correlates with clinical benefit. J. Immunol. 155:5029-5037 (1995).Google Scholar
  12. 12.
    A. F. Kavanaugh, L. S. Davis, R. I. Jain, L. A. Nichols, S. H. Norris, and P. E. Lipsky. A phase I/II open label study of the safety and efficacy of an anti-ICAM-1 (intercellular adhesion molecule-1; CD54) monoclonal antibody in early rheumatoid arthritis. J. Rheumatol. 23:1338-1344 (1996).Google Scholar
  13. 13.
    A. B. Gottlieb, J. G. Krueger, K. Wittkowski, R. Dedrick, P. A. Walicke, and M. Garovoy. Psoriasis as a model for T-cell-mediated disease: Immunobiologic and clinical effects of treatment with multiple doses of efalizumab, an anti-CD11a antibody. Arch. Dermatol. 138:591-600 (2002).Google Scholar
  14. 14.
    K. Papp, R. Bissonnette, J. G. Krueger, W. Carey, D. Gratton, W. P. Gulliver, H. Lui, C. W. Lynde, A. Magee, D. Minier, J. P. Ouellet, P. Patel, J. Shapiro, N. H. Shear, S. Kramer, P. Walicke, R. Bauer, R. L. Dedrick, S. S. Kim, M. White, and M. R. Garovoy. The treatment of moderate to severe psoriasis with a new anti-CD11a monoclonal antibody. J. Am. Acad. Dermatol. 45:665-674 (2001).Google Scholar
  15. 15.
    S. A. Tibbetts, C. Chirathaworn, M. Nakashima, S. D. S. Jois, T. J. Siahaan, M. A. Chan, and S. H. Benedict. Peptides derived from ICAM-1 and LFA-1 modulate T cell adhesion and immune function in a mixed lymphocyte culture. Transplantation 68:685-692 (1999).Google Scholar
  16. 16.
    S. A. Tibbetts, S. D. S. Jois, T. J. Siahaan, S. H. Benedict, and M. A. Chan. Linear and cyclic LFA-1 and ICAM-1 peptides inhibit T cell adhesion and function. Peptides 21:1161-1167 (2000).Google Scholar
  17. 17.
    H. Yusuf-Makagiansar, I. T. Makagiansar, and T. J. Siahaan. Inhibition of the adherence of T-lymphocytes to epithelial cells by a cyclic peptide derived from inserted domain of lymphocyte function-associated antigen-1. Inflammation 25:203-214 (2001).Google Scholar
  18. 18.
    T. J. Siahaan, S. A. Tibbetts, S. D. S. Jois, M. A. Chan, and S. A. Benedict. Counter receptor binding domains that block or enhance binding to LFA-1 or ICAM-1. In P. T. P. Kaumaya and R. S. Hodges (eds.), Peptides: Chemistry, Structure and Biology. Mayflower Scientific, Kingswinford, England, 1996, pp. 792-793.Google Scholar
  19. 19.
    S. D. S. Jois, S. A. Tibbetts, M. A. Chan, S. H. Benedict, and T. J. Siahaan. A Ca2+ binding cyclic peptide derived from the alpha-subunit of LFA-1: Inhibitor of ICAM-1/LFA-1-mediated T-cell adhesion. J. Pept. Res. 53:18-29 (1999).Google Scholar
  20. 20.
    H. Yusuf-Makagiansar, I. T. Makagiansar, Y. Hu, and T. J. Siahaan. Synergistic inhibitory activity of α-and β-LFA-1 peptides on LFA-1/ICAM-1 interaction. Peptides 22:1955-1962 (2001).Google Scholar
  21. 21.
    A. M. Randi and N. Hogg. I-domain of beta 2 integrin lymphocyte function-associated antigen-1 contains a binding site for ligand intercellular adhesion molecule-1. J. Biol. Chem. 269:12395-12398 (1994).Google Scholar
  22. 22.
    R. N. Gursoy and T. J. Siahaan. Binding and internalization of an ICAM-1 peptide by the surface receptors of T cells. J. Pept. Res. 53:414-421 (1999).Google Scholar
  23. 23.
    M. L. Dustin, O. Carpen, and T. A. Springer. Regulation of locomotion and cell–cell contact area by the LFA-1 and ICAM-1 adhesion receptors. J. Immunol. 148:2654-2663 (1992).Google Scholar
  24. 24.
    H. Yusuf-Makagiansar and T. J. Siahaan. Binding and internalization of an LFA-1-derived cyclic peptide by ICAM receptors on activated lymphocyte: a potential ligand for drug targeting to ICAM-1-expressing cells. Pharm. Res. 18:329-335 (2001).Google Scholar
  25. 25.
    J. Bella, P. R. Kolatkar, C. W. Marlor, J. M. Greve, and M. G. Rossmann. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc. Natl. Acad. Sci. USA 95:4140-4145 (1998).Google Scholar
  26. 26.
    J. M. Casasnovas, T. Stehle, J. H. Liu, J. H. Wang, and T. A. Springer. A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc. Natl. Acad. Sci. USA 95:4134-4139 (1998).Google Scholar
  27. 27.
    T. R. Gadek, D. J. Burdick, R. S. McDowell, M. S. Stanley, J. C. Marsters, Jr., K. J. Paris, D. A. Oare, M. E. Reynolds, C. Ladner, K. A. Zioncheck, W. P. Lee, P. Gribling, M. S. Dennis, N. J. Skelton, D. B. Tumas, K. R. Clark, S. M. Keating, M. H. Beresini, J. W. Tilley, L. G. Presta, and S. C. Bodary. Generation of an LFA-1 antagonist by the transfer of the ICAM-1 immunoregulatory epitope to a small molecule. Science 295:1086-1089 (2002).Google Scholar
  28. 28.
    E. D. Bell, A. P. May, and D. L. Simmons. The leukocyte function-associated antigen-1 (LFA-1)-binding site on ICAM-3 comprises residues on both faces of the first immunoglobulin domain. J. Immunol. 161:1363-1370 (1998).Google Scholar
  29. 29.
    D. A. Bleijs, M. E. Binnerts, S. J. van Vliet, C. G. Figdor, and Y. van Kooyk. Low-affinity LFA-1/ICAM-3 interactions augment LFA-1/ICAM-1-mediated T cell adhesion and signaling by redistribution of LFA-1. J. Cell Sci. 113:391-400 (2000).Google Scholar
  30. 30.
    R. N. Gursoy, S. D. S. Jois, and T. J. Siahaan. Structural recognition of an ICAM-1 peptide by its receptor on the surface of T cells: conformational studies of cyclo (1,12)-Pen-Pro-Arg-Gly-Gly-Ser-Val-Leu-Val-Thr-Gly-Cys-OH. J. Pept. Res. 53:422-431 (1999).Google Scholar
  31. 31.
    S. D. S. Jois, D. Pal, S. A. Tibbetts, M. A. Chan, S. H. Benedict, and T. J. Siahaan. Inhibition of homotypic adhesion of T-cells: secondary structure of an ICAM-1-derived cyclic peptide. J. Pept. Res. 49:517-526 (1997).Google Scholar
  32. 32.
    X. Lu, Y. Sun, D. Shang, B. Wattam, S. Egglezou, T. Hughes, E. Hyde, M. Scully, and V. Kakkar. Evaluation of the role of proline residues flanking the RGD motif of dendroaspin, an inhibitor of platelet aggregation and cell adhesion. Biochem. J. 355:633-638 (2001).Google Scholar
  33. 33.
    A. McDowall, B. Leitinger, P. Stanley, P. A. Bates, A. M. Randi, and N. Hogg. The I-domain of integrin leukocyte function-associated antigen-1 is involved in a conformational change leading to high affinity binding to ligand intercellular adhesion molecule 1 (ICAM-1). J. Biol. Chem. 273:27396-27403 (1998).Google Scholar
  34. 34.
    N. Hogg and B. Leitinger. Shape and shift changes related to the function of leukocyte integrins LFA-1 and Mac-1. J. Leukocyte Biol. 69:893-898 (2001).Google Scholar
  35. 35.
    Q. Ma, M. Shimaoka, C. Lu, H. Jing, C. V. Carman, and T. A. Springer. Activation-induced conformational changes in the I-domain region of lymphocyte function-associated antigen 1. J. Biol. Chem. 277:10638-10641 (2002).Google Scholar
  36. 36.
    G. Liu, J. R. Huth, E. T. Olejniczak, R. Mendoza, P. DeVries, S. Leitza, E. B. Reilly, G. F. Okasinski, S. W. Fesik, and T. W. von Geldern. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J. Med. Chem. 44:1202-1210 (2001).Google Scholar
  37. 37.
    K. Last-Barney, W. Davidson, M. Cardozo, L. L. Frye, C. A. Grygon, J. L. Hopkins, D. D. Jeanfavre, S. Pav, C. Qian, J. M. Stevenson, L. Tong, R. Zindell, and T. A. Kelly. Binding site elucidation of hydantoin-based antagonists of LFA-1 using multidisciplinary technologies: Evidence for the allosteric inhibition of a protein–protein interaction. J. Am. Chem. Soc. 123:5643-5650 (2001).Google Scholar
  38. 38.
    L. A. Sklar and D. A. Finney. Analysis of ligand–receptor interactions with the fluorescence activated cell sorter. Cytometry 3:161-165 (1982).Google Scholar
  39. 39.
    J. D. Chambers, S. I. Simon, E. M. Berger, L. A. Sklar, and K. E. Arfors. Endocytosis of beta 2 integrins by stimulated human neutrophils analyzed by flow cytometry. J. Leukocyte Biol. 53:462-469 (1993).Google Scholar
  40. 40.
    Z. Liao, L. M. Cimakasky, R. Hampton, D. H. Nguyen, and J. E. Hildreth. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res. Hum. Retroviruses 17:1009-1019 (2001).Google Scholar
  41. 41.
    J. V. Fecondo, N. C. Pavuk, K. A. Silburn, D. M. Read, A. S. Mansell, A. W. Boyd, and D. A. McPhee. Synthetic peptide analogs of intercellular adhesion molecule 1 (ICAM-1) inhibit HIV-1 replication in MT-2 cells. AIDS Res. Hum. Retroviruses 9:733-740 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Pharmaceutical ChemistryThe University of Kansas, Simons Research LaboratoriesLawrence

Personalised recommendations