Skip to main content
Log in

Study on Fluorescence Characteristic of Quercetin–Nanoporous Anodic Aluminum Oxide Composites

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nanoporous Anodic Aluminum Oxide (AAO), its average diameters of porous were 50 nm, was obtained by two-step electrochemical anodization aluminum process. Highly ordered luminescence arrays formed by filling AAO nanopores with quercetin molecules has been studied by fluorescent spectroscopy in this work. AAO showed stronger adsorption capability of quercetin than Al3+-quercetin complex. The mechanism may be physical and chemical adsorption all together. Meanwhile, red shift of the maximum fluorescence peak of quercetin in AAO was observed. The molecular assemblies in the nanopore array are highly ordered and the fluorescence polarization dependence indicates a preferred molecular orientation along the pore axis. This maybe explains the mechanism of molecular luminescence depending on its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. P. Li, F. Mueller, A. Birner, K. Nielsch, and U. G¨osele (1998). Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl Phys. 84(11), 6023-6026.

    Google Scholar 

  2. G. L. Hornyak, C. J. Patrissi, and C. R. Martin (1997). Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: The nonscattering Maxwell-garnett limit. J. Phys. Chem B. 101(10), 1548-1555.

    Google Scholar 

  3. R. Reisfeld (2002). Fluorescent dyes in sol-gel glasses. J. Fluorescence. 12(3/4), 317-326.

    Google Scholar 

  4. J. Karolin, C. D. Geddes, K. Wynne, and D. J. S. Birch (2002). Nanoparticle metrology in sol-gels using multiphoton excited fluorescence anisotropy decay. Meas. Sci. Technol. 13(1), 21-27.

    Google Scholar 

  5. I. A. Levitsky, J. Liang and J. M. Xu (2002). Highly ordered arrays of organic-inorganic nanophotonic composites. Appl. Phys. Lett. 81(9), 1696-1698.

    Google Scholar 

  6. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura (2001). Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 13(3), 189-192.

    Google Scholar 

  7. Y. Yamamoto, N. Baba, and S. Tjima (1981). Coloured materials and photoluminescence centers in anodic film on alumina. Nature 289(12), 572-574.

    Google Scholar 

  8. R. A. Hahn and D. Bloor (1991). Organic Materials for Nonlinear Optics, Royal Society of Chemistry, Cambridge.

    Google Scholar 

  9. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998). Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013-2016.

    Google Scholar 

  10. W. C. Chan and S. M. Nie (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016-2018.

    Google Scholar 

  11. Y. Yang, H. Y. Li, H. L. Chen, and X. M. Bao (2002). Luminescence study of fluorescent dye impregnated into Si-based nanoporous alumina. Chem. J. Chin. Univ. 23(5), 768-771.

    Google Scholar 

  12. C. X. Xun, Q. H. Xue, L. Ba, B. Zhao, N. Gu, Y. P. Cui (2001). Photoluminescence of 8-hydroxyl quinoline-Al 3 C complex on nanopores anodic aluminum oxide. J. Chin. Sci. Bull. 46(12), 984-987.

    Google Scholar 

  13. H. Masuda and Fukuda K.(1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466-1468.

    Google Scholar 

  14. P. Braunstein, H. P. Kormann, W. Meyer-Zaika, R. Pugin, and G. Schmid (2000). Strategies for the anchoring of metal complexes, clusters, and colloids inside nanoporous alumina membranes. Chem. Eur. J. 24(6), 4637-4646.

    Google Scholar 

  15. G. Schmid, M. Baumle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski (1999). Current and future applications of nanoclusters. Chem. Soc. Rev. 28(1), 179-185.

    Google Scholar 

  16. G. Z. Chen, X. Z. Huang, and J. G. Xu. (1999). Methods of Fluorescence Analysis, 2nd ed., Science Press, Beijing, pp. 3-14.

    Google Scholar 

  17. M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi (1965). The exciton model in molecular spectroscopy. Pure Appl. Chem. 11(5), 371-392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, X., Wang, S., Luo, H. et al. Study on Fluorescence Characteristic of Quercetin–Nanoporous Anodic Aluminum Oxide Composites. Journal of Fluorescence 13, 421–425 (2003). https://doi.org/10.1023/A:1026117006830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026117006830

Navigation