# Method of Generalized Moment Representations in the Theory of Rational Approximation (A Survey)

Article

- 55 Downloads
- 6 Citations

## Abstract

We give a survey of the method of generalized moment representations introduced by Dzyadyk in 1981 and its applications to Padé approximations. In particular, some properties of biorthogonal polynomials are investigated and numerous important examples are given. We also consider applications of this method to joint Padé approximations, Padé–Chebyshev approximations, Hermite–Padé approximations, and two-point Padé approximations.

## Keywords

Rational Approximation Chebyshev Approximation Moment Representation Biorthogonal Polynomial Generalize Moment Representation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## REFERENCES

- 1.G. A. Baker, Jr., and P. Graves-Morris,
*Pad*é*Approximants*[Russian translation], Mir, Moscow (1986).Google Scholar - 2.C. G. J. Jacobi, “Ñber die Darstellung einer Reihe gegebnerWerthe durch eine gebroche rationale Function,”
*J. Reine Angew. Math.*,**30**, 127–156 (1846).Google Scholar - 3.G. Frobenius, “Ñber Relationen zwischen den Näherungsbrüchen von Potenzreihen,”
*J. Reine Angew. Math.*,**90**, 1–17 (1881).Google Scholar - 4.H. Padé, “Sur la répresentation approchèe d'une fonction par des fractions rationelles,”
*Ann. l*'Ecole Normale Supè*r. (3)*,**9**, Suppl., 3–93 (1892).Google Scholar - 5.H. Padé, “Recherches sur la convergence des dèveloppements en fractions continues d'une certaine catègorie de fonctions,”
*Ann. l*'Ecole Normale Sup´er.*(3)*,**24**, 341–400 (1907).Google Scholar - 6.P. L. Chebyshev,
*Selected Mathematical Works*[in Russian], Gostekhizdat, Moscow (1946).Google Scholar - 7.T. J. Stieltjes,
*Recherches sur les Fractions Continues*[Russian translation], DNTVU, Kiev (1936).Google Scholar - 8.A. A. Markov,
*Selected Works on the Theory of Continued Fractions and the Theory of Functions Deviating Least from Zero*[in Russian], Gostekhteoretizdat, Moscow (1948).Google Scholar - 9.H. Hamburger, “Über eine Erweiterung des Stieltjessen Momentproblems. I–III,”
*Math. Ann.*,**81**, 235–319 (1920),**82**, 120–164, 168–187 (1921).Google Scholar - 10.F. Hausdorff, “Summationsmethoden und Momentfolgen. I, II,”
*Math. Z.*,**9**, 74–109, 280–299 (1921).Google Scholar - 11.N. I. Akhiezer,
*Classical Moment Problem and Some Related Problems of Analysis*[in Russian], Fizmatgiz, Moscow (1961).Google Scholar - 12.A. A. Gonchar, “On the convergence of Padè approximants,”
*Mat. Sb.*,**92**, No. 1, 152–164 (1973).Google Scholar - 13.A. A. Gonchar, “On the convergence of Padè approximants for certain classes of meromorphic functions,”
*Mat. Sb.*,**97**, No. 4, 607–629 (1975).Google Scholar - 14.E. A. Rakhmanov, “On the convergence of Padè approximants in classes of holomorphic functions,”
*Mat. Sb.*,**112**, No. 2, 162–169 (1977).Google Scholar - 15.E. A. Rakhmanov, “On asymptotics of the ratio of orthogonal polynomials. II,”
*Mat. Sb.*,**118**, No. 1, 104–117 (1982).Google Scholar - 16.K. N. Lungu, “On properties of functions related to the behavior of poles of Padè approximants,”
*Mat. Zametki*,**29**, No. 6, 843–848 (1981).Google Scholar - 17.J. Gilewicz, “Story of rational approximation for the class of Stieltjes functions: from Stieltjes to recent optimal estimations of errors,”
*Ukr. Mat. Zh.*,**46**, No. 7, 941–943 (1994).Google Scholar - 18.Y. L. Luke, “On the error in Padè approximations for functions defined by Stieltjes integrals,”
*Comput. Math.*,**3**, No. 4, 307–314 (1977).Google Scholar - 19.G. A. Baker, “Best error bounds for Padè approximants to convergent series of Stieltjes,”
*J. Math. Phys.*,**10**, 814–820 (1969).Google Scholar - 20.W. Gautschi, “On Padè approximants associated with Hamburger series,”
*Calcolo*,**20**, No. 2, 814–820 (1983).Google Scholar - 21.P. Wynn, “Upon the Padè table derived from a Stieltjes series,”
*SIAM J. Numer. Anal.*,**5**, 805–834 (1968).Google Scholar - 22.E. Hendriksen and H. van Rossum, “Moment methods in Padè approximation,”
*J. Approxim. Theory*,**35**, No. 3, 250–263 (1982).Google Scholar - 23.E. Hendriksen and H. van Rossum, “Moment methods in Padè approximation: the unitary case,”
*J. Math. Anal. Appl.*,**104**, No. 2, 512–525 (1984).Google Scholar - 24.J. Nuttall and S. R. Singh, “Orthogonal polynomials and Padè approximants associated with a system of arcs,”
*J. Approxim. Theory*,**21**, No. 1, 1–42 (1977).Google Scholar - 25.H. Stahl, “Orthogonal polynomials with complex-valued weight function. I, II,”
*Constr. Approxim.*,**2**, No. 3, 225–251 (1986).Google Scholar - 26.A. A. Gonchar, “On the convergence of generalized Padè approximants of meromorphic functions,”
*Mat. Sb.*,**98**, No. 4, 564–577 (1975).Google Scholar - 27.S. P. Suetin, “Inverse theorems on generalized Padè approximants,”
*Mat. Sb.*,**109**, No. 4, 629–646 (1979).Google Scholar - 28.S. P. Suetin, “On the Montessus de Ballore theorem for nonlinear Padè approximants and Faber series,”
*Dokl. Akad. Nauk SSSR*,**253**, No. 6, 1322–1325 (1980).Google Scholar - 29.L. Karlberg,
*A Convergence Result for Generalized Pad*è*Approximants*, Preprint No. 4, Department of Mathematics, Umeå University, Umeå (1978).Google Scholar - 30.A. A. Gonchar and L. Giermo Lopes, “On the Markov theorem for multipoint Padè approximants,”
*Mat. Sb.*,**105**, No. 4, 512–524 (1978).Google Scholar - 31.V. N. Rusak,
*Rational Functions as an Apparatus of Approximation*[in Russian], Belorussian University, Minsk (1979).Google Scholar - 32.E. A. Rovba, “Rational interpolation of differentiable functions with
*r*th derivative of bounded variation,”*Vestsi Nats. Akad. Nauk Belarus., Ser. Fiz. -Mat. Navuk*, No. 2, 8–13 (1999).Google Scholar - 33.E. A. Rovba, “Interpolational rational functions of the Fejèr–Bernstein type,”
*Vestn. Belorus. Univ., Ser. 1*, No. 2, 75–78 (1991).Google Scholar - 34.L. I. Filozof, “Conditions for the convergence of multipoint Padè approximants,” in:
*Theory of Approximation of Functions and Its Applications*[in Russian], Institute of Cybernetics, Ukrainian Academy of Sciences (1984), pp. 121–126.Google Scholar - 35.A. Magnus, “On the structure of the two-point Padè table,”
*Lect. Notes Math.*,**932**, 176–193 (1982).Google Scholar - 36.O. Njåstad, “A multi-point Padè approximation problem,”
*Lect. Notes Math.*,**1199**, 263–268 (1986).Google Scholar - 37.H. Wallin, “Convergence and divergence of multipoint Padè approximants of meromorphic functions,”
*Lect. Notes Math.*,**1105**, 272–284 (1984).Google Scholar - 38.
- 39.M. A. Angelesco, “FrSur deux extensions des fractions continues algebriques,”
*Comp. Rend. Acad. Sci. Paris*,**168**, 262–263 (1919).Google Scholar - 40.
- 41.J. Coates, “On the algebraic approximation of functions. I–III,”
*Indag. Math.*,**28**, 421–461 (1966).Google Scholar - 42.H. Jager, “A multidimensional generalization of the Padè table,”
*Indag. Math.*,**26**, 192–249 (1964).Google Scholar - 43.
- 44.E. M. Nikishin, “On asymptotics of linear forms for joint Padè approximants,”
*Izv. Vyssh. Uchebn. Zaved., Ser. Mat.*, No. 2, 33–41 (1986).Google Scholar - 45.A. A. Gonchar and E. A. Rakhmanov, “On the convergence of joint Padè approximants for systems of Markov-type functions,”
*Tr. Mat. Inst. Akad. Nauk SSSR*,**26**, 31–48 (1981).Google Scholar - 46.E. M. Nikishin and V. N. Sorokin,
*Rational Approximations and Orthogonality*[in Russian], Nauka, Moscow (1988).Google Scholar - 47.A. I. Aptekarev, “On Padè approximants for the collection
_{1}F_{1}(1*,c*;λį*z*)_{į}^{k}=1,”*Vestn. Mosk. Univ., Mat. Mekh.*, No. 2, 58–62 (1981).Google Scholar - 48.A. I. Aptekarev, “Asymptotics of polynomials of joint orthogonality in the Angelesco case,”
*Mat. Sb.*,**136**, 56–84 (1988).Google Scholar - 49.V. A. Kalyagin, “On one class of polynomials defined by two orthogonality relations,”
*Mat. Sb.*,**110**, No. 4, 609–627 (1979).Google Scholar - 50.V. Kaliaguine, “The operator moment problem, vector continued fractions and an explicit form of the Favard theorem for vector orthogonal polynomials,”
*JComput. Appl. Math.*,**65**, 181–193 (1995).Google Scholar - 51.V. I. Parusnikov, “Jacobi–Perron algorithm and joint approximation of functions,”
*Mat. Sb.*,**114**, No. 2, 322–333 (1981).Google Scholar - 52.M. G. de Bruin, “Some convergence results in simultaneous rational approximation to the set of hypergeometric functions {
_{1}*F*_{1}(1;*c*_{i};*z*)}_{i=1}^{n},”*Lect. Notes Math.*,**1071**, 12–33 (1984).Google Scholar - 53.M. G. de Bruin, “Some explicit formulae in simultaneous Padè approximation,”
*Lin. Alg. Its Appl.*,**63**, Dec., 271–281 (1984).Google Scholar - 54.M. G. de Bruin, “Simultaneous Padè approximation and orthogonality,”
*Lect. Notes Math.*,**1171**, 74–83 (1985).Google Scholar - 55.M. G. de Bruin, “Simultaneous rational approximation to some
*q*-hypergeometric functions,” in:*Nonlinear Numerical Methods and Rational Approximation*, Reidel, Dordrecht (1988), pp. 135–142.Google Scholar - 56.M. G. de Bruin, K. A. Driver, and D. S. Lubinsky, “Convergence of simultaneous Hermite–Padè approximants to the
*n*-tuple of*q*-hypergeometric series {_{1}φ_{1}(_{c,03BB;j}^{(1,1)};*z*)}_{j=1}^{n=1},”*Numerical Algorithms*,**3**, 185–192 (1992).Google Scholar - 57.M. G. de Bruin, K. A. Driver, and D. S. Lubinsky, “Convergence of simultaneous Hermite–Pad´e approximants to the
*n*-tuple of*q*-hypergeometric series {_{2}φ_{0}((*A*, α_{j}), (1, 1);*z*)}_{j=1}^{n},”*J. Comput. Appl. Math.*,**49**, 37–43 (1993).Google Scholar - 58.G. V. Chudnovsky, “Padè approximation and the Riemann monodromy problem,” in:
*Bifurcation Phenomena in Mathematical Physics and Related Topics*, Reidel, Dordrecht (1980), pp. 449–510.Google Scholar - 59.G. V. Chudnovsky, “Hermite–Padè approximations to exponential functions and elementary estimates of the measure of irrationality of π,”
*Lect. Notes Math.*,**925**, 299–322 (1982).Google Scholar - 60.J. Nuttall, “Hermite–Padè approximants to functions meromorphic on a Riemann surface,”
*J. Approxim. Theory*,**32**, No. 3, 233–240 (1981).Google Scholar - 61.J. Nuttall, “Asymptotics of diagonal Hermite–Padè polynomials,”
*J. Approxim. Theory*,**42**, No. 4, 299–386 (1984).Google Scholar - 62.B. Beckermann and G. Labahn, “A uniform approach for Hermite–Padè and simultaneous Padè approximants and their matrix-type generalizations,”
*Numerical Algorithms*,**3**,45–54 (1992).Google Scholar - 63.V. K. Dzyadyk, “Approximation method for the approximation of solutions of linear differential equations by algebraic polynomials,”
*Izv. Akad. Nauk SSSR, Ser. Mat.*,**38**, No. 4, 937–967 (1974).Google Scholar - 64.V. K. Dzyadyk, “A-method and rational approximation,”
*Ukr. Mat. Zh.*,**37**, No. 3, 250–252 (1985).Google Scholar - 65.V. K. Dzyadyk,
*Approximation Methods for the Solution of Differential and Integral Equations*[in Russian], Naukova Dumka, Kiev (1988).Google Scholar - 66.V. I. Bilenko, V. N. Konovalov, I. A. Lukovskii, et al., “Dzyadyk approximation methods for the solution of differential and integral equations,”
*Ukr. Mat. Zh.*,**41**, No. 4, 454–465 (1989).Google Scholar - 67.V. K. Dzyadyk and L. I. Filozof, “On the rate of convergence of Padè approximants for certain elementary functions,”
*Mat. Sb.*,**107**, No. 3, 347–363 (1978).Google Scholar - 68.V. K. Dzyadyk, “On asymptotics of diagonal Padè approximants for the functions sin
*z*, cos*z*, sinh*z*, and cosh*z*, “*Mat. Sb.*,**108**, No. 2, 247–267 (1979).Google Scholar - 69.V. K. Dzyadyk, “On generalization of the moment problem,”
*Dokl. Akad. Nauk Ukr. SSR*, No. 6, 8–12 (1981).Google Scholar - 70.A. P. Holub,
*Generalized Moment Representations and Rational Approximations*[in Russian], Preprint No. 87.25, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987).Google Scholar - 71.V. K. Dzyadyk and A. P. Holub,
*Generalized Moment Problem and Pad*è*Approximation*[in Russian], Preprint No. 81.58, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1981), pp. 3–15.Google Scholar - 72.D. Z. Arov, “Passive linear stationary dynamical systems,”
*Sib. Mat. Zh.*,**20**, No. 2, 211–228 (1979).Google Scholar - 73.M. Abramowitz and I. A. Stegun (editors),
*Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables*[Russian translation], Nauka, Moscow (1979).Google Scholar - 74.A. P. Holub,
*Application of Generalized Moment Problem to Pad*è*Approximation of Certain Functions*[in Russian], Preprint No. 81.58, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1981), pp. 16–56.Google Scholar - 75.M. M. Dzhrbashyan,
*Integral Transformations and Representation of Functions in the Complex Plane*[in Russian], Nauka, Moscow (1966).Google Scholar - 76.A. P. Holub, “On Padè approximation of the Mittag-Leffler function,” in:
*Theory of Approximation of Functions and Its Applications*[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1984), pp. 52–59.Google Scholar - 77.M. N. Chyp, “Superdiagonal Padè approximation of the Mittag-Leffler-type function
*E*_{1/2}(*z*; ), Reα*>*0,” in:*Some Problems in the Theory of Approximation of Functions*[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1985), pp. 129–138.Google Scholar - 78.R. Walliser, “Rationale Approximation des
*q*-Analogons der Exponentialfunktion und Irrationalitätsaussagen für diese Funktion,”*Arch. Math.*,**44**, No. 1, 59–64 (1985).Google Scholar - 79.G. E. Andrews,
*The Theory of Partitions*[Russian translation], Nauka, Moscow (1982).Google Scholar - 80.A. P. Holub, “Generalized moment representations of basic hypergeometric series,”
*Ukr. Mat. Zh.*,**41**, No. 6, 803–808 (1989).Google Scholar - 81.H. Bateman and A. Erdèlyi,
*Higher Transcendental Functions*[Russian translation], Vol. 1, Nauka, Moscow (1965).Google Scholar - 82.
- 83.E. Andrews and R. Askey, “Classical orthogonal polynomials,”
*Lect. Notes. Math.*,**1171**, 36–62 (1985).Google Scholar - 84.A. P. Holub, “On one type of generalized moment representations,”
*Ukr. Mat. Zh.*,**41**, No. 11, 1455–1460 (1989).Google Scholar - 85.A. P. Holub, “Generalized moment representations and Padè approximants,” in:
*Theory of Approximation of Functions and Its Applications*, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2000), pp. 144–160.Google Scholar - 86.A. P. Holub, “Generalized moment representations and Pad´e approximants associated with bilinear transformations,” in: “
*Theory of Approximations and Harmonic Analysis*,” Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2001), p. 16.Google Scholar - 87.A. Iserles and S. P. Nørsett, “On the theory of bi-orthogonal polynomials,”
*Math. Comput.*, No. 1 (1986).Google Scholar - 88.C. Brezinski,
*Biorthogonality and Its Applications to Numerical Analysis*, Marcel Dekker, New York (1992).Google Scholar - 89.V. K. Dzyadyk, “Generalized moment problem and Padè approximation,”
*Ukr. Mat. Zh.*,**35**, No. 3, 297–302 (1983).Google Scholar - 90.A. P. Holub, “Some properties of biorthogonal polynomials,”
*Ukr. Mat. Zh.*,**41**, No. 10, 1384–1388 (1989).Google Scholar - 91.G. Castro and A. Seghier, “Recurrence relation for biorthogonal polynomials,”
*Comp. Rend. Acad. Sci. Paris*,**324**, No. 12, 1413–1418 (1997).Google Scholar - 92.V. K. Dzyadyk,
*Introduction to the Theory of Uniform Polynomial Approximation of Functions*[in Russian], Nauka, Moscow (1977).Google Scholar - 93.A. P. Holub, “Some properties of biorthogonal polynomials and their application to Padè approximations,”
*Ukr. Mat. Zh.*,**46**, No. 8, 977–984 (1994).Google Scholar - 94.A. P. Holub, “Generalized moment representations, biorthogonal polynomials, and Padè approximants,”
*Ukr. Mat. Zh.*,**46**, No. 10, 1328–1335 (1994).Google Scholar - 95.A. P. Holub, “Generalized moment representations and invariance properties of Padè approximants,”
*Ukr. Mat. Zh.*,**48**, No. 3, 309–314 (1996).Google Scholar - 96.H. van Rossum, “Systems of orthogonal and quasiorthogonal polynomials connected with the Padè table. I–III,”
*Proc. Kon. Ned. Akad. Wetensch. A*,**58**, No. 4, 517–534 (1955).Google Scholar - 97.A. P. Holub, “Proof of the Padè and van Rossum theorems using generalized moment representations,” in:
*Some Problems in the Theory of Approximation of Functions and Their Applications*[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1989), pp. 37–43.Google Scholar - 98.A. P. Holub, “Integral equations of the convolution type and Padè approximants,” in:
*Investigations on the Theory of Approximation of Functions*[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987), pp. 21–23.Google Scholar - 99.Y. L. Luke,
*The Special Functions and Their Approximations*, Vol. 2, Academic Press, New York (1992).Google Scholar - 100.Y. L. Luke,
*Mathematical Functions and Their Approximations*, Academic Press, New York (1975).Google Scholar - 101.D. S. Lubinsky, “Uniform convergence of rows of the Padè table for functions with smooth MacLaurin series coefficients,”
*Constr. Approxim.*,**3**, 307–330 (1987).Google Scholar - 102.A. P. Holub, “On one system of biorthogonal polynomials and its applications,”
*Ukr. Mat. Zh.*,**41**, No. 7, 961–965 (1989).Google Scholar - 103.A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov,
*Classical Orthogonal Polynomials of a Discrete Variable*[in Russian], Nauka, Moscow (1985).Google Scholar - 104.A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,
*Integrals and Series. Additional Chapters*[in Russian], Nauka, Moscow (1986).Google Scholar - 105.A. P. Holub, “On joint Padè approximants for a collection of degenerate hypergeometric functions,”
*Ukr. Mat. Zh.*,**39**, No. 6, 701–706 (1987).Google Scholar - 106.A. P. Holub, “Convergence of denominators of joint Padè approximants for a collection of degenerate hypergeometric functions,”
*Ukr. Mat. Zh.*,**40**, No. 6, 792–795 (1988).Google Scholar - 107.A. P. Holub, “On joint Padè approximants for a collection of Mittag-Leffler-type functions,” in:
*Harmonic Analysis and Development of Approximation Methods*[in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1989), pp. 38–42.Google Scholar - 108.A. P. Holub, “Generalized moment representations and Padè–Chebyshev approximants,”
*Ukr. Mat. Zh.*,**42**, No. 6, 762–766 (1990).Google Scholar - 109.A. P. Holub, “Padè–Chebyshev approximants for one class of functions,”
*Ukr. Mat. Zh.*,**54**, No. 1, 15–19 (2002).Google Scholar

## Copyright information

© Plenum Publishing Corporation 2003