Journal of Pharmacokinetics and Biopharmaceutics

, Volume 25, Issue 6, pp 673–694 | Cite as

Physiological Indirect Effect Modeling of the Antilipolytic Effects of Adenosine A1-Receptor Agonists

  • Erno A. van Schaick
  • Henrik J. M. M. de Greef
  • Adriaan P. Ijzerman
  • Meindert Danhof


The relationship between blood concentrations of the adenosine A1-receptor agonist N6-(p-sulfophenyI)adenosine (SPA) and its effect on both plasma nonesterified fatty acid (NEFA) and glycerol release was described on the basis of an integrated pharmacokinetic–pharmacodynamic model. An indirect response model rather than a hypothetical “link” model was used to account for the delayed response. For that purpose an empirical solution to the differential equation describing the physiological indirect response model is presented. The model-estimated rate constant for the output of the glycerol response was compared to the elimination rate constant after exogenous administration of glycerol. In a crossover designed study, chronically cannulated male Wistar rats were subjected to either SPA administration (120 μg/kg for 15 min) for measurement of the effects on glycerol, or glycerol administration for determination of glycerol pharmacokinetics. Glycerol pharmacokinetics was determined in the presence of a stable level of SPA (171±6ng/ml) to suppress endogenous glycerol levels completely. The indirect response model adequately described the relationship between SPA concentrations and plasma glycerol levels. The PD parameter estimates for EC50, Emax, and Hill factor were 23±2 ng/ml, 74±3% (change from baseline), and 3.3±0.5, respectively. These values were not different from those obtained when analyzing the data on basis of the differential equation directly. Furthermore the EC50 values for the reduction in glycerol or NEFA levels were identical (23±2 and 21±3 ng/ml, respectively) indicating that both PD end points reflect the same physiological process. The concentration–time profile after administration of glycerol could be described best on the basis of a biexponential function. The value for kout in the PK/PD model (0.19±0.03 min−1) corresponded very well to the terminal elimination rate constant determined after iv administration of glycerol (0.25±0.03 min−1). In conclusion, the antilipolytic effects of adenosine A1-receptor agonists can be described by the indirect suppression model. The rate constant describing the delay between concentration and glycerol effect was shown to be a true reflection of the removal of glycerol.

adenosine A1-receptor N6-(p-sulfophenyl)adenosine NEFA glycerol pharmacokinetic–pharmacodynamic modeling indirect response validation conscious rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Williams. Purinergic drugs: opportunities in the 1990s. Drug Dev. Res. 28:438–444 (1993).CrossRefGoogle Scholar
  2. 2.
    J. E. Foley. Rationale for activation of adenosine A1 receptors in adipocytes in the treatment of non-insulin dependent diabetes mellitus. Drug. Dev. Res. 32:126 (1994).CrossRefGoogle Scholar
  3. 3.
    K. A. Jacobson, P. J. M. van Galen, and M. Williams. Adenosine receptors: Pharmacology, structure-activity relationships, and therapeutic potential. J. Med. Chem. 35:407–422 (1992).PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    R. A. A. Mathôt, E. A. van Schaick, M. W. E. Langemeijer, W. Soudijn, D. D. Breimer, A. P. IJzerman, and M. Danhof. Pharmacokinetic-pharmacodynamic relationship of the cardiovascular effects of adenosine A1 receptor agonist N 6-cyclopentyladenosine in the rat. J. Pharmacol. Exp. Ther. 268:616–624 (1994).PubMedGoogle Scholar
  5. 5.
    R. A. A. Mathôt, E. M. van der Wenden, W. Soudijn, A. P. IJzerman, and M. Danhof. Deoxyribose analogues of N 6-cyclopentyladenosine (CPA): Partial agonists at the adenosine A1 receptor in vivo. Br. J. Pharmacol. 116:1957–1964 (1995).PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    E. A. van Schaick, H. J. M. M. de Greef, M. W. E. Langemeijer, M. J. Sheehan, A. P. IJzerman, and M. Danhof. Pharmacokinetic-pharmacodynamic modelling of the anti-lipolytic and anti-ketotic effects of the adenosine A1-receptor agonist N 6-(p-sulfophenyl) adenosine in rats. Br. J. Pharmacol. 122:525–533, 1997.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    P. J. Randle, C. N. Hales, P. B. Garland, and E. A. Newsholme. The glucose fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances in diabetes mellitus. Lancet 1:785–789 (1969).Google Scholar
  8. 8.
    G. M. Reaven and Y-D. I. Chen. Role of abnormal free fatty acid metabolism in the development of non-insulin dependent diabetes mellitus. Am. J. Med. 85:106–112 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    J. D. McGarry. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258:766–770 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Londos, R. C. Honner, and G. S. Dhillon. c-AMP dependent protein kinase and lipolysis in rat adipocytes. III. Multiple modes of insulin regulation of lipolysis and regulation of insulin responses by adenylate cyclase. J. Biol. Chem. 260:15139–15145 (1985).PubMedGoogle Scholar
  11. 11.
    K. A. Jacobson, O. Nikodijevi, X. Ji, D. A. Berkich, D. Eveleth, R. L. Dean, K. Hiramatsu, N. F. Kassel, P. J. M. van Galen, K. S. Lee, R. T. Bartus, J. W. Daly, K. F. LaNoue, and M. Maillard. Synthesis and biological activity of N 6-(p-sulfophenyl)alkyl and N 6-sulfoalkyl derivatives of adenosine: Water-soluble and peripherally selective adenosine agonists. J. Med. Chem. 35:4143–4149 (1992).PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    M. Gibaldi and D. Perrier. Non-compartmental analysis based on statistical moment theory. In Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982, pp. 409–424.Google Scholar
  13. 13.
    K. Yamoaka, T. Nakagawa, and T. Uno. Application of Aikaike's information criterion (AIC) in the evaluation of linear pharmacokinetics. J. Pharmacokin. Biopharm. 6:165–175 (1978).CrossRefGoogle Scholar
  14. 14.
    N. L. Dayneka, V. Garg, and J. W. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokin. Biopharm. 21:457–478 (1993).CrossRefGoogle Scholar
  15. 15.
    A. I. Nichols and W. J. Jusko. Receptor-mediated prednisolone pharmacodynamics in rats: verification using a dose-sparing regimen. J. Pharmacokin. Biopharm. 18:189–208 (1990).CrossRefGoogle Scholar
  16. 16.
    S. K. Yamashita, E. A. Ludwig, E. Middleton, and J. W. Jusko. Lack of pharmacokinetic and pharmacodynamic interactions between ketoconazole and prednisolone. Clin. Pharmacol. Ther. 49:558–570 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    A. I. Nichols, R. D'Ambrosio, N. A. Pyszcynski, and J. W. Jusko. Pharmacokinetics and pharmacodynamics of prednisolone in obese rats. J. Pharmacol. Exp. Ther. 250:963–970 (1989).PubMedGoogle Scholar
  18. 18.
    J. M. T. van Griensven, J. W. Jusko, H. H. P. J. Lemkes, R. Kroon, C. J. Verhorst, S. T. Chiang, and A. F. Cohen. Tolrestat pharmacokinetic and pharmacodynamic effects on red blood cell sorbitol levels in normal volunteers and in patients with insulin-dependent diabetes. Clin. Pharmacol. Ther. 58: 631–640 (1995).PubMedCrossRefGoogle Scholar
  19. 19.
    U. Schwabe, R. Ebert, and H. C. Erbler. Adenosine release from isolated fat cells and its significance for the effects of hormones on cyclic 3′,5′-AMP levels and lipolysis. Naunyn-Schmeidebergs Arch. Exp. Pathol. Pharmakol. 276:133–148 (1973).CrossRefGoogle Scholar
  20. 20.
    W. J. Jusko and H. C. Ko. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56:406–419 (1994).PubMedCrossRefGoogle Scholar
  21. 21.
    K. N. Frayn, C. M. Williams, and P. Arner. Are increased plasma non-esterified fatty acid concentrations a risk marker for coronary heart disease and other chronic diseases? Clin. Sci. 90:243–253 (1996).PubMedGoogle Scholar
  22. 22.
    R. H. Ackermann, K. H. Bässler, and K. Wagner. Glyzerin: Ausnutzung, Umsatzkapazität und biokinetische Daten unter intravenöser Zufuhr bei der Ratte. Infusionstherapie 2:9–15 (1975).Google Scholar
  23. 23.
    P. Strong, R. Anderson, J. Coates, F. Ellis, B. Evans, M. F. Gurden, J. Johnstone, I. Kennedy, and D. P. Martin. Suppression of non-esterified fatty acids and triacylglycerol in experimental animals by the adenosine analogue GR79236. Clin. Sci. 84:663–669 (1993).PubMedGoogle Scholar
  24. 24.
    C. J. Gardner, D. J. Twissell, J. Coates, and P. Strong. The effects of GR79236 on plasma fatty acid concentrations, heart rate and blood pressure in the conscious rat. Eur. J. Pharmacol. 257:117–121 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    G. M. Reaven, H. Chang, H. Ho, C. I. Jeng, and B. Hoffman. Lowering of plasma glucose in diabetic rats by antilipolytic agents. Am. J. Physiol. 254:E23–30 (1988).PubMedGoogle Scholar
  26. 26.
    M. G. Collis and S. M. O. Hourani. Adenosine receptor subtypes. Trends Pharmacol. Sci. 14:360–366 (1993).PubMedCrossRefGoogle Scholar
  27. 27.
    C. C. Peck, W. H. Barr, L. Z. Benet, J. Collins, R. E. Desjardins, D. E. Furst, J. G. Harter, G. Levy, T. Ludden, J. H. Rodman, L. Sanathan, J. J. Schentag, V. P. Shah, L. B. Sheiner, J. P. Kelly, D. R. Stanski, R. J. Temple, C. T. Viswanathan, J. Weissinger, and A. Yacobi. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Clin. Pharmacol. Ther. 51:465–473 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Gibaldi and D. Perrier. Method of Laplace transforms. In Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1975, pp. 267–272.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Erno A. van Schaick
    • 1
  • Henrik J. M. M. de Greef
    • 1
  • Adriaan P. Ijzerman
    • 1
  • Meindert Danhof
    • 1
  1. 1.Divisions of Pharmacology and Medicinal Chemistry, Leiden/Amsterdam Center for Drug ResearchLeiden UniversityLeidenThe Netherlands

Personalised recommendations