Skip to main content
Log in

Comparison of ED, EID, and API Criteria for the Robust Optimization of Sampling Times in Pharmacokinetics

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Optimization of the sampling schedule can be used in pharmacokinetic (PK) experiments to increase the accuracy and the precision of parameter estimation or to reduce the number of samples required. Several optimization criteria that formally incorporate prior parameter uncertainty have been proposed earlier. These criteria consist in finding the sampling schedule that maximizes the expectation (over a given parameter distribution) of det F (ED-optimality) or Log(det F) (API-optimality), or minimizes the expectation of 1/det F (EID-optimality), where F is the Fisher information matrix. The precision and the accuracy of parameter estimation after having fitted a PK model to a small number of optimal data points (determined according to D, ED, EID, and API criteria) or to a naive sampling schedule were compared in a Monte Carlo simulation study. A one-compartment model with first-order absorption rate (3 parameters) and a two-compartment model with zero-order infusion rate (4 parameters) were considered. Data were simulated for 300 subjects with both structural models, combined with several residual error models (homoscedastic, heteroscedastic with constant or variable coefficient of variation). Interindividual variabilities in PK parameters ranged from 25–66%. ED-, EID-, and API-optimal sampling times were calculated using the software OSP-Fit. Three or five samples were allowed for parameter estimation by extended least-squares. Performances of each design criterion were evaluated in terms of mean prediction error, root mean squared error, and number of acceptable estimates (i.e., with a SE less than 30%). Compared to the D-optimal design, the EID and API designs reduced the bias and the imprecision of the estimation of the parameters having a large interindividual variability. Moreover, the API design resulted in some cases in a higher number of acceptable estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. R. Corson, C. Cobelli, and L. Finkelstein. The Mathematical Modelling of Biological and Endocrine Systems, Wiley-Interscience, New York, 1983.

    Google Scholar 

  2. E. M. Landaw. Optimal design for individual parameter estimation in pharmacokinetics. In Variability in Drug Therapy: Description, Estimation and Control, Raven Press, New York, 1985, pp. 187–200.

    Google Scholar 

  3. D. Z. D'Argenio. Optimal sampling times for pharmacokinetic experiments. J. Pharmacokin. Biopharm. 9:739–756 (1981).

    Article  Google Scholar 

  4. G. L. Drusano, A. Forrest, M. J. Snyder, M. D. Reed, and J. L. Blumer. An evaluation of optimal sampling strategy and adaptive study design. Clin. Pharmacol. Ther. 44:232–238 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. G. L. Drusano, A. Forrest, K. I. Plaisance, and J. C. Wade. A prospective evaluation of OST in the determination of the steady-state pharmacokinetics of piperacillin in febrile neutropenic cancer patients. Clin. Pharmacol. Ther. 45:635–641 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. G. L. Drusano. OST and population modelling: application to determination of the influence of microgravity environment on drug distribution and elimination. J. Clin. Pharmacol. 31:962–967 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. L. Pronzato and E. Walter. Robust experiment design via maximin optimization. Math. Biosci. 89:161–176 (1988).

    Article  Google Scholar 

  8. L. Pronzato and E. Walter. Robust experiment design via stochastic approximation. Math. Biosci. 75:103–120 (1985).

    Article  Google Scholar 

  9. E. Walter and L. Pronzato. Optimal experiment design for nonlinear models subject to large prior uncertainties. Am. J. Physiol. 253:R530–R534 (1987).

    CAS  PubMed  Google Scholar 

  10. D. Z. D'Argenio. Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci. 99:105–118 (1990).

    Article  PubMed  Google Scholar 

  11. L. Pronzato, C. Y. Huang, E. Walter, Y. Le Roux, and A. Frydman. Planification d'experiences pour l'estimation de paramètres pharmacocinétiques. In Informatique et Santé 2, Springer-Verlag, 1989, pp. 3–13.

  12. M. Tod and J. M. Rocchisani. Implementation of OSPOP, an algorithm for the estimation of optimal sampling times in pharmacokinetics by the ED, EID and API criteria. Comput. Meth. Prog. Biomed. 50:13–22 (1996).

    Article  CAS  Google Scholar 

  13. Y. Merlé. Planification de protocoles bayésiens expérimentaux pour l'estimation des paramètres individuels d'un modèle. Ph.D Thesis, Université Paris VII 1996, pp. 1–173.

  14. M. Tod and R. Gomeni. OSP-Fit User's Manual, Bestfit S.A., L-2210 Luxembourg, 1996.

    Google Scholar 

  15. D. Z. D'Argenio and A. Schumitzky. ADAPT II User's Guide, Biomedical Simulation Resource, University of Southern California. Los Angeles, 1992.

    Google Scholar 

  16. L. B. Sheiner and S. Beal. Some suggestions for measuring predictive performance. J. Pharmacokin. Biopharm. 9:503–512 (1981).

    Article  CAS  Google Scholar 

  17. A. Pazman. Small-sample distributional properties of non-linear regression estimators (a geometric approach) (with discussion). Statistics 21:323–367 (1990).

    Article  Google Scholar 

  18. M. Tod, C. Padoin, K. Louchahi, B. Moreau-Tod, O. Petitjean, and G. Perret. Application of OST to the determination of metacycline pharmacokinetic parameters: effect of model misspecification. J. Pharmacokin. Biopharm. 22:129–146 (1994).

    Article  CAS  Google Scholar 

  19. T. M. Ludden, S. L. Beal, and L. B. Sheiner. Comparison of the Akaike information criterion, the Schwarz criterion and the F test as guides to model selection. J. Pharmacokin. Biopharm. 22:431–445 (1994).

    Article  CAS  Google Scholar 

  20. Y. Merlé, F. Mentré, A. Mallet, and A. H. Aurengo. Designing an optimal experiment for bayesian estimation: application to the kinetics of iodine thyroid uptake. Stat. Med. 13:185–196 (1994).

    Article  PubMed  Google Scholar 

  21. F. Mentré, P. Burtin, Y. Merlé, J. Van Bree, A. Mallet, and J. L. Steimer. Sparse-sampling optimal designs in pharmacokinetics and toxicokinetics. Drug Inform. J. 29:997–1019 (1995).

    Google Scholar 

  22. Y. Merlé and F. Mentré. Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. J. Pharmacokin. Biopharm. 23:101–125 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tod, M., Rocchisani, JM. Comparison of ED, EID, and API Criteria for the Robust Optimization of Sampling Times in Pharmacokinetics. J Pharmacokinet Pharmacodyn 25, 515–537 (1997). https://doi.org/10.1023/A:1025701327672

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025701327672

Navigation