Skip to main content
Log in

Crystallization Behavior of Alkoxy-Derived Cordierite Gels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Alkoxy-derived cordierite gels were synthesized from tetraethylorthosilicate (TEOS), aluminum isopropoxide (Al(OPri)3), and magnesium ethoxide (Mg(OEt)2). TEOS was partially hydrolyzed at molar ratios H2O/TEOS = 1.2, in the presence of hydrochloric acid as a catalyst, HCl/TEOS = 0.1. Aluminum and magnesium alkoxides were added successively or as a double alkoxide. Phase transformations occurring in the gel were studied by differential thermal analysis, x-ray diffractometry, and Fourier-transform infrared spectroscopy. In all cases, μ-cordierite crystallized at similar temperatures (950–1000°C) with small amounts of spinel, which confirms dominant influence of the optimal conditions for partial hydrolysis of TEOS on the gels homogeneity. The transformation of μ- into α-cordierite began at about 1100°C. Broadening of diffraction peaks and appearance of new bands in the FT IR spectra confirmed the transformation of α- into modulated β-cordierite at temperatures above 1300°C. Differential thermal analysis under nonisothermal conditions also proved homogeneous nucleation with constant rate and three-dimensional crystallite growth during μ-cordierite crystallization. The overall activation energy of the crystallization of μ-cordierite is 580 ± 81 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Mackenzie, in Ultrastucture Processing of Ceramics, Glasses and Composite, edited by L.L. Hench and D.R. Ulrich (John Wiley &; Sons, New York, 1984), p. 15.

    Google Scholar 

  2. D.R. Uhlmann, B.J.J. Zelinski, and G.E. Wnek, in Better Ceramics Through Chemistry, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (MRS Symposia Proceedings, North-Holland, New-York, 1984), Vol. 32, p. 59.

    Google Scholar 

  3. Lj. Kostić-Gvozdenović, S. Milonjić, and R. Ćirjaković, J. Serb. Chem. Soc. 60, 1141 (1995).

    Google Scholar 

  4. Lj. Kostić-Gvozdenović, T. Janaćković, M. Tecilazić-Stevanović, and Dj. Janaćković, in Electroceramics and Ceramics for Special Applications, edited by G. Ziegler and H. Hausner (Proc. II Euro-Ceram. Soc. Conf., Deutsche Keramische Gesellschaft e.V., Frankfurt, 1993), Vol. III, p. 2431.

    Google Scholar 

  5. R. Petrović, Dj. Janaćković, S. Zec, S. Drmanić, and Lj. Kostić-Gvozdenović, J. Mater. Res. 16, 451 (2001).

    Google Scholar 

  6. R. Petrović, Dj. Janaćković, B. Božović, S. Zec, and Lj. Kostić-Gvozdenović, J. Serb. Chem. Soc. 66, 335 (2001).

    Google Scholar 

  7. Dj. Janackovic, V. Jokanovic, Lj. Kostic-Gvozdenovic, S. Zec, and D. Uskokovic, J. Mater. Sci. 32, 163 (1997).

    Google Scholar 

  8. H. Suzuki, K. Ota, and H. Saito, Yogyo-Kyokai-Chi 95, 163 (1987).

    Google Scholar 

  9. K. Maeda, F. Mizukami, S. Miyashita, S. Niwa, and M. Toba, J. Chem. Soc., Chem. Commun. 18, 1268 (1990).

    Google Scholar 

  10. R. Salmon and E. Matijević, Ceram. Int. 16, 157 (1990).

    Google Scholar 

  11. G. Karagedov, A. Feltz, and B. Neidnicht, J. Mater. Sci. 26, 6396 (1991).

    Google Scholar 

  12. M. Okuyama, T. Fukui, and C. Sakurai, J. Am. Ceram. Soc. 75, 153 (1992).

    Google Scholar 

  13. L. El Chahal, J. Werckmann, G. Pourroy, and C. Esnouf, J. Cryst. Grow. 156, 99 (1995).

    Google Scholar 

  14. L. Bonhomme-Coury, F. Babonneau, and J. Livage, Chem. Mater. 5, 323 (1993).

    Google Scholar 

  15. P.N. Kumta, R.E. Hackenberg, P. McMichael, and W.C. Johnson, Mater. Lett. 20, 355 (1994).

    Google Scholar 

  16. D. Pal, A.K. Chakraborty, S. Sen, and S.K. Sen, J. Mat. Sci. 31, 3995 (1996).

    Google Scholar 

  17. K. Langer and W. Schreyer, Am. Mineral. 54, 5442 (1969).

    Google Scholar 

  18. A. Putnis, Contrib. Mineral. Petrol. 74, 135 (1980).

    Google Scholar 

  19. A. Putnis and D.L. Bish, Am. Mineral. 68, 60 (1983).

    Google Scholar 

  20. S.A.T. Redfern, E. Salje, W. Maresch, and W. Schreyer, Am. Mineral. 74, 1293 (1989).

    Google Scholar 

  21. I. Gouby, P. Thomas, D. Mercurio, T. Merle-Méjean, and B. Frit, Mater. Res. Bull. 30, 593 (1995).

    Google Scholar 

  22. C.A. Fyfe, G.C. Gobbi, and A. Putnis, J. Am. Ceram. Soc. 108, 3218 (1986).

    Google Scholar 

  23. B. Güttler, E. Salje, and A. Putnis, Phys. Chem. Minerals 16, 365 (1989).

    Google Scholar 

  24. H. Yinnon and D.R. Uhlmann, J. Non-Cryst. Solids 54, 253 (1983).

    Google Scholar 

  25. K. Matusita and S. Sakka, Phys. Chem. Glasses 20, 81 (1979).

    Google Scholar 

  26. I.W. Donald, J. Mater. Sci. 30, 904 (1995).

    Google Scholar 

  27. D.R. Mc Farlane and M. Fragoulis, Phys. Chem. Glasses 27, 228 (1986).

    Google Scholar 

  28. B.C. Lim and H.M. Jang, J. Mater. Res. 6, 2427 (1991).

    Google Scholar 

  29. H.M. Jang and B.C. Lim, J. Mater. Res. 9, 2627 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrović, R., Janaćković, D., Zec, S. et al. Crystallization Behavior of Alkoxy-Derived Cordierite Gels. Journal of Sol-Gel Science and Technology 28, 111–118 (2003). https://doi.org/10.1023/A:1025649406466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025649406466

Navigation