Skip to main content
Log in

Precession and Interference in the Aharonov–Casher and Scalar Aharonov–Bohm Effects

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The ideal scalar Aharonov–Bohm (SAB) and Aharonov–Casher (AC) effect involve a magnetic dipole pointing in a certain fixed direction: along a purely time dependent magnetic field in the SAB case and perpendicular to a planar static electric field in the AC case. We extend these effects to arbitrary direction of the magnetic dipole. The precise conditions for having nondispersive precession and interference effects in these generalized set ups are delineated both classically and quantally. Under these conditions the dipole is affected by a nonvanishing torque that causes pure precession around the directions defined by the ideal set ups. It is shown that the precession angles are in the quantal case linearly related to the ideal phase differences, and that the nonideal phase differences are nonlinearly related to the ideal phase differences. It is argued that the latter nonlinearity is due to the appearance of a geometric phase associated with the nontrivial spin path. It is further demonstrated that the spatial force vanishes in all cases except in the classical treatment of the nonideal AC set up, where the occurring force has to be compensated by the experimental arrangement. Finally, for a closed space-time loop the local precession effects can be inferred from the interference pattern characterized by the nonideal phase differences and the visibilities. It is argued that this makes it natural to regard SAB and AC as essentially local and nontopological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory”, Phys. Rev. 115(3), 485–491 (1959).

    Google Scholar 

  2. A. S. Goldhaber, “Comment on topological quantum effects for neutral particles”, Phys. Rev. Lett. 62(4), 482(1989).

    Google Scholar 

  3. M. Peshkin and H. J. Lipkin, “Topology, locality, and Aharonov–Bohm effect with neutrons,” Phys. Rev. Lett. 74(15), 2847–2850 (1995).

    Google Scholar 

  4. M. Peshkin, “Force-free interactions and nondispersive phase shifts in interferometry,” Found. Phys. 29(3), 481–489 (1999).

    Google Scholar 

  5. A. Zeilinger, “Generalized Aharonov–Bohm experiments with neutrons”, in Fundamental Aspects of Quantum Theory, V. Gorini and A. Frigerio, eds. (NATO ASI Series B, Vol. 144, Plenum, New York, 1986), p. 311.

    Google Scholar 

  6. Y. Aharonov and A. Casher, “Topological quantum effects for neutral particles,” Phys. Rev. Lett. 53(4), 319–321 (1984).

    Google Scholar 

  7. B. E. Allman, A. Cimmino, A. G. Klein, G. I. Opat, H. Kaiser, and S. A. Werner, “Scalar Aharonov–Bohm experiment with neutrons”, Phys. Rev. Lett. 68(16), 2409–2412 (1992).

    Google Scholar 

  8. B. E. Allman, A. Cimmino, A. G. Klein, G. I. Opat, H. Kaiser, and S. A. Werner, “Observation of the scalar Aharonov–Bohm effect by neutron interferometry,” Phys. Rev. A 48(3), 1799–1807 (1993).

    Google Scholar 

  9. B. E. Allman, W.-T. Lee, O. I. Motrunich, and S. A. Werner, “Scalar Aharonov–Bohm effect with longitudinally polarized neutrons”, Phys. Rev. A 60(6), 4272–4284 (1999).

    Google Scholar 

  10. A. Cimmino, G. I. Opat, A. G. Klein, H. Kaiser, S. A. Werner, M. Arif, and R. Clothier, “Observation of the topological Aharonov–Casher phase shift by neutron interferometry”, Phys. Rev. Lett. 63(4), 380–383 (1989).

    Google Scholar 

  11. G. Badurek, H. Weinfurter, R. Gähler, A. Kollmar, S. Wehinger, and A. Zeilinger, “Nondispersive phase of the Aharonov–Bohm effect,” Phys. Rev. Lett. 71(3), 307–311 (1993).

    Google Scholar 

  12. K. Sangster, E. A. Hinds, S. M. Barnett, E. Riis, and A. G. Sinclair, “Measurement of the Aharonov–Casher phase in an atomic system,” Phys. Rev. Lett. 71(22), 3641–3644 (1993).

    Google Scholar 

  13. K. Sangster, E. A. Hinds, S. M. Barnett, E. Riis, and A. G. Sinclair, “Aharonov–Casher phase in an atomic system”, Phys. Rev. A 51(3), 1776–1786 (1995).

    Google Scholar 

  14. A. Görlitz, B. Schuh, and A. Weis, “Measurement of the Aharonov–Casher phase of aligned Rb atoms,” Phys. Rev. A 51(6), R4305-R4308 (1995).

    Google Scholar 

  15. H. Rauch and S. A. Werner, Neutron Interferometry (Oxford University Press, Oxford, 2000).

    Google Scholar 

  16. J. P. Dowling, C. P. Williams, and J. D. Franson, “Maxwell duality, Lorentz invariance, and topological phase,” Phys. Rev. Lett. 83(13), 2486–2489 (1999).

    Google Scholar 

  17. X.-G. He and B. H. J. McKellar, “Topological phase due to electric dipole moment and magnetic monopole interaction,” Phys. Rev. A 47(4), 3424–3425 (1993).

    Google Scholar 

  18. M. Wilkens, “Quantum phase of a moving dipole”, Phys. Rev. Lett. 72(1), 5–8 (1994).

    Google Scholar 

  19. Y. D. Han and I. G. Koh, “Topological nature of the Aharonov–Casher effect,” Phys. Lett. A 167, 341–344 (1992).

    Google Scholar 

  20. E. Sjöqvist, “Anandan–Aharonov–Casher oscillations in a simply connected region”, Phys. Lett. A 270, 10–13 (2000).

    Google Scholar 

  21. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975).

    Google Scholar 

  22. H. Goldstein, Classical Mechanics, 2nd edn. (Addison–Wesley, Reading, Massachusetts, 1980), p. 232.

    Google Scholar 

  23. W. Pauli, “Relativistic field theories of elementary particles,” Rev. Modern Phys. 13(3), 203–232 (1941).

    Google Scholar 

  24. L. L. Foldy, “The electromagnetic properties of Dirac particles,” Phys. Rev. 87(5), 688–693 (1952).

    Google Scholar 

  25. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw–Hill, New York, 1964), p. 8.

    Google Scholar 

  26. J. Anandan, “Electromagnetic effects in the quantum interference of dipoles,” Phys. Lett. A 138, 347–352 (1989).

    Google Scholar 

  27. X.-G. He and B. H. J. McKellar, “The topological phase of the Aharonov–Casher effect and the anyon behaviour of charged particles in 2+1 dimensions,” Phys. Lett. B 256, 250–254 (1991).

    Google Scholar 

  28. C. R. Hagen, “Exact equivalence of spin-1/2 Aharonov–Bohm and Aharonov–Casher effects,” Phys. Rev. Lett. 64(20), 2347–2349 (1990).

    Google Scholar 

  29. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).

    Google Scholar 

  30. A. G. Wagh and V. C. Rakhecha, “On measuring the Pancharatnam phase. I. Interferometry”, Phys. Lett. A 197, 107–111 (1995).

    Google Scholar 

  31. A. G. Wagh, V. C. Rakhecha, P. Fischer, and A. Ioffe, “Neutron interferometric observation of noncyclic phase”, Phys. Rev. Lett. 81(10), 1992–1995 (1998).

    Google Scholar 

  32. Y. Aharonov and B. Reznik, “Complementarity between local and nonlocal topological effects”, Phys. Rev. Lett. 84(21), 4790–4793 (2000).

    Google Scholar 

  33. P. Hyllus and E. Sjöqvist, “Comment on complementarity between local and nonlocal topological effects”, Phys. Rev. Lett. 89(19), 198901(2002).

    Google Scholar 

  34. Y. Aharonov and B. Reznik, “Reply to comment on complementarity between local and nonlocal topological effects”, Phys. Rev. Lett. 89, 198902(2002).

    Google Scholar 

  35. A. G. Wagh and V. C. Rakhecha, “Electromagnetic acceleration of neutrons and its observability”, Phys. Rev. Lett. 78(8), 1399–1403 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyllus, P., Sjöqvist, E. Precession and Interference in the Aharonov–Casher and Scalar Aharonov–Bohm Effects. Foundations of Physics 33, 1085–1105 (2003). https://doi.org/10.1023/A:1025637918269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025637918269

Navigation