Advertisement

Foundations of Physics

, Volume 33, Issue 8, pp 1207–1221 | Cite as

Equation of Motion of an Electric Charge

  • Amos Harpaz
  • Noam Soker
Article

Abstract

The appearance of the time derivative of the acceleration in the equation of motion (EOM) of an electric charge is studied. It is shown that when an electric charge is accelerated, a stress force exists in the curved electric field of the accelerated charge, and in the case of a constant linear acceleration, this force is proportional to the acceleration. This stress force acts as a reaction force which is responsible for the creation of the radiation (instead of the “radiation reaction force” that actually does not exist at low velocities). Thus the initial acceleration should be supplied as an initial condition for the solution of the EOM of an electric charge.

radiation reaction force curved electric field time derivative of the acceleration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Schott, Electromagnetic Radiation (Cambridge University Press, Cambridge, 1912).Google Scholar
  2. 2.
    P. A. M. Dirac, Proc. Roy. Soc. A 167, 148(1938).Google Scholar
  3. 3.
    F. Rohrlich, Classical Charged Particles (Addison–Wesley, Reading, MA, 1965).Google Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, 3rd edn. (Pergamon, New York, 1971).Google Scholar
  5. 5.
    A. Harpaz and N. Soker, Found. Phys. 31, 935(2001).Google Scholar
  6. 6.
    R. Fulton and F. Rohrlich, Ann. Phys. 9, 499(1960).Google Scholar
  7. 7.
    D. G. Boulware, Ann. Phys. 124, 169(1980).Google Scholar
  8. 8.
    C. Leibovitz and A. Peres, Ann. Phys. 25, 400(1963).Google Scholar
  9. 9.
    A. Harpaz and N. Soker, Proc. Roy. Soc. A, (physics/0207038).Google Scholar
  10. 10.
    F. Rohrlich, Am. J. Phys. 68, 1109(2000).Google Scholar
  11. 11.
    A. Harpaz, Euro. J. Phys. 23, 263(2002).Google Scholar
  12. 12.
    F. Rohrlich, Ann. Phys. 22, 169(1963).Google Scholar
  13. 13.
    A. K. Singal, Gen. Rel. Grav. 29, 1371(1997).Google Scholar
  14. 14.
    A. Gupta and T. Padmanabhan, Phys. Rev. D 57, 7241(1998).Google Scholar
  15. 15.
    J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975).Google Scholar
  16. 16.
    A. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, 2nd edn. (Addison–Wesley, Reading, MA, 1964).Google Scholar
  17. 17.
    A. Harpaz and N. Soker, Gen. Rel. Grav. 30, 1217(1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Amos Harpaz
    • 1
    • 2
  • Noam Soker
    • 2
  1. 1.Institute of Theoretical PhysicsTechnion, HaifaIsrael
  2. 2.Department of PhysicsOranim, TivonIsrael

Personalised recommendations