Skip to main content
Log in

Quantification of Fe2+/Fe3+ by Electron Microprobe Analysis – New Developments

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The measurement of the soft FeLα and FeLβ X-ray emission spectra by electron microprobe (flank method) allows the determination of the iron oxidation state in minerals if our new method for self-absorption correction is applied. It can be shown that the FeLβ/FeLα ratios obtained with the flank method correlate with Mössbauer quadrupole splitting and crystallographic data. This can be explained by the successive distortion of the iron coordination polyhedra with cation substitution. Thus, the electron microprobe data unexpectedly reveal details of the electrostatic field at the crystallographic site. Although the resolution with respect to hyperfine parameters is lower compared to other methods, the Fe2+/Fe3+ determination by electron microprobe bears several advantages: (i) the small sample amount needed, (ii) the small sampling volume ≤1 μm3, (iii) the simultaneous in situ Fe2+/Fe3+ determination and quantitative chemical analysis, (iv) the easy routine sample preparation, (v) the ready availability of an electron microprobe in comparison to a synchrotron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilke, M., Farges, F., Petit, P.-E., Brown Jr., G. E. and Martin, F., Am. Mineral. 86 (2001), 714.

    Google Scholar 

  2. Raeburn, S. P., Ilton, E. S. and Veblen, D. R., Geochim. Cosmochim. Acta 61 (1997), 4531.

    Article  ADS  Google Scholar 

  3. McCammon, C. A., Hyp. Interact. 92 (1994), 1235.

    Article  Google Scholar 

  4. van Aken, P.A. and Liebscher, B., Phys. Chem. Minerals 29 (2002), 188.

    Article  ADS  Google Scholar 

  5. PaviĆeviĆ, M. K., Amthauer, G. and El Goresy, A., J. Serb. Chem. Soc. 54 (1989), 359.

    Google Scholar 

  6. Armstrong, J. T., Anal. Chem. 71 (1999), 2714.

    Article  Google Scholar 

  7. Höfer, H. E., Brey, G. P., Schulz-Dobrick, B. and Oberhänsli, R., Eur. J. Mineral. 6 (1994), 407.

    Google Scholar 

  8. Enders, M., Speer, D., Maresch, W. V. and McCammon, C. A., Contrib. Mineral. Petrol. 140 (2000), 135.

    Article  ADS  Google Scholar 

  9. Höfer, H. E., Weinbruch, S., McCammon, C. A. and Brey, G. P., Eur. J. Mineral. 12 (2000), 63.

    Google Scholar 

  10. Höfer, H. E. and Brey, G. P., in preparation.

  11. Woodland, A. B. and O'Neill, H. St. C., Am. Mineral. 78 (1993), 1002.

    Google Scholar 

  12. Woodland, A. B. and Ross, C. R. II, Phys. Chem. Minerals 21 (1994), 117.

    Article  Google Scholar 

  13. Geiger, C. A. and Rossman, G. R., Phys. Chem. Minerals 21 (1994), 516.

    Article  Google Scholar 

  14. Geiger, C. A. and Feenstra, A., Am. Mineral. 82 (1997), 571.

    Google Scholar 

  15. Amthauer, G., Annersten, H. and Hafner, S. S., Z. Kristallogr. 143 (1976), 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höfer, H.E. Quantification of Fe2+/Fe3+ by Electron Microprobe Analysis – New Developments. Hyperfine Interactions 144, 239–248 (2002). https://doi.org/10.1023/A:1025461907725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025461907725

Navigation