Skip to main content
Log in

A Mixed Criterion of Delayed Creep Failure Under Plane Stress

  • Published:
International Applied Mechanics Aims and scope

Abstract

The paper discusses delayed creep failure criteria and their experimental justification. These criteria allow transition from the strength characteristics under uniaxial stress to the strength characteristics under plane stress. The criterion is chosen in the form of a mixed invariant that relates two stress components responsible for brittle and ductile failure. The limit characteristics take the effect of the principal stresses into account. The criterion was tested for isotropic metallic materials subjected to internal pressure, internal pressure with tension, pure torsion, and tension with torsion

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. N. Kats, “Study into the long-term strength of carbon steel pipes,” Teploénergetika, No. 11, 37-40 (1956).

    Google Scholar 

  2. S. N. Kats, “Creep failure of austenitic steel pipes under internal pressure,” Énergomashinostroenie, No. 11, 1-5 (1957).

    Google Scholar 

  3. S. N. Kats, “Influence of additional axial forces on the long-term strength of boiler pipes,” Teploénergetika, No. 5, 12-16 (1960).

    Google Scholar 

  4. V. N. Kisilevskii, V. K. Lukashev, D. V. Polevoi, B. V. Samsonov, and N. P. Losev, “Effect of reactor radiation on the long-term strength of Kh16N15M3B steel depending on the stress mode,” Probl. Prochn., No. 9, 39-42 (1974).

    Google Scholar 

  5. V. I. Krizhanovskii, “Initial relations and technique for deriving two-parameter criteria of long-term strength under biaxial stress,” Teor. Prikl. Mekh., 34, 190-195 (2001).

    Google Scholar 

  6. A. A. Lebedev, “The generalized long-term strength criterion,” in: Heat Resistance of Materials and Structural Elements [in Russian], Naukova Dumka, Kiev (1965), pp. 69-76.

    Google Scholar 

  7. A. A. Lebedev, “An experimental investigation into the long-term strength of chromium-nickel-titanium steel under biaxial tension,” in: Heat Resistance of Materials and Structural Elements [in Russian], Naukova Dumka, Kiev (1965), pp. 77-83.

    Google Scholar 

  8. A. M. Lokoshchenko, E. A. Myakotin, and S. A. Shesterikov, “Creep and long-term strength of Kh18N10T steel under complex stress,” Mekh. Tverd. Tela, No. 4, 87-94 (1979).

    Google Scholar 

  9. A. Nadai, Theory of Flow and Fracture of Solids, in two vols., McGraw-Hill, New York (1950-1963).

    Google Scholar 

  10. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  11. V. P. Sdobyrev, “Long-term strength of ÉI437B alloy under complex stress,” Izv. USSR, Otd. Tekhn. Nauk, No. 4, 92-97 (1958).

    Google Scholar 

  12. V. P. Sdobyrev, “A long-term strength criterion for some heat resisting alloys under complex stress,” Izv. AN SSSR, Otd. Tekhn. Nauk, No. 6, 93-99 (1959).

    Google Scholar 

  13. I. I. Trunin, “Long-term strength assessment and some features of deformation under complex stress,” PMTF, No. 1, 110-114 (1963).

    Google Scholar 

  14. I. I. Trunin, “A creep strength criterion under complex stress,” Prikl. Mekh., 1, No. 7, 77-83 (1965).

    Google Scholar 

  15. A. Hald, Statistical Theory with Engineering Applications, John Wiley & Sons, New York, Chapman & Hall, London (1952).

    Google Scholar 

  16. Yu. N. Shevchenko, R. G. Terekhov, N. S. Braikovskaya, and S. M. Zakharov, “Study into the creep failure of an element of a body,” Prikl. Mekh., 30, No. 4, 21-40 (1994).

    Google Scholar 

  17. V. P. Golub, “Experimental analysis of high-temperature creep, fatigue, and damage. 1. Analysis methods,” Int. Appl. Mech., 37, No. 4, 425-455 (2001).

    Google Scholar 

  18. V. P. Golub, “Experimental analysis of high-temperature creep, fatigue, and damage. 2. Basic laws,” Int. Appl. Mech., 37, No. 5, 565-601 (2001).

    Google Scholar 

  19. D. R. Hayhurst, “Creep rupture under multi-axial states of stress,” J. Mech. Phys. Solids, 20, No. 6, 381-390 (1972).

    Google Scholar 

  20. A. E. Johnson and N. E. Frost, “Fracture under combined stress creep conditions of a 0.5 per cent molybdenum steel,” The Engineer, 191, 434-437 (1951).

    Google Scholar 

  21. A. E. Johnson, “Complex stress creep of metals,” Metallurgical Reviews, 5, No. 20, 447-506 (1960).

    Google Scholar 

  22. L. F. Kooistra, R. U. Blaser, and J. T. Tucker, “High-temperature stress-rupture testing of tubular specimens,” Trans. ASME, 74, No. 5, 783-792 (1952).

    Google Scholar 

  23. W. Siegfried, “Failure from creep as influenced by the state of stress,” J. Appl. Mech., 10, No. 4, 202-221 (1943).

    Google Scholar 

  24. Yu. N. Shevchenko and R. G. Terekhov, “Studying the laws of the thermoviscoplastic deformation of a solid under nonisothermal complex loading. Part 2,” Int. Appl. Mech., 37, No. 6, 701-727 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golub, V.P., Krizhanovskii, V.I. & Rusinov, A.A. A Mixed Criterion of Delayed Creep Failure Under Plane Stress. International Applied Mechanics 39, 556–565 (2003). https://doi.org/10.1023/A:1025187509053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025187509053

Navigation