Cellulose

, Volume 10, Issue 3, pp 213–225

Solubility and Solution Structure of Cellulose Derivatives

  • Walther Burchard
Article

Abstract

Strongly interacting solvents are needed to dissolve cellulose; therefore, in the past the interpretation of the uncommon solution behavior of cellulose and its derivatives was based mainly on energetic (enthalpic) considerations, for example, hydrogen bonding. These attempts have not been very successful. The present paper demonstrates that entropic effects influence the solution behavior much stronger than hitherto supposed. In the well-known Flory–Huggins theory the driving force for dissolution of flexible chains is the configurational entropy of mixing. This large entropy is strongly reduced by the chain stiffness of the cellulose backbone and by the strictly regular primary structure of this polysaccharide. It strongly reduces the driving force for dissolution. The entropy of mixing becomes largely increased again by the attachment of long side chains and causes solubility with surprising efficiency (hairy rod principle). This effect is demonstrated with several examples. Among others, the surprising insolubility of short, regular-selectively substituted cellulose chains is explained, although long chains of the same substitution pattern are soluble. The striking behavior of cellulose ethers in water is based on the hydrophobic effect, which causes an increased order of the polymer surrounding water molecules. The induced order results in a very pronounced decrease of entropy of mixing that overcompensates the positive configurational entropy of mixing. Common rules of basic thermodynamics now predict phase separation on heating, contrary to the Flory–Huggins theory, which can only predict phase separation on cooling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballauff M. 1986. Phase equilibria in rod-like systems with flexible chain molecules. Macromolecules 19: 1366-1374.Google Scholar
  2. Bethe H. 1935. Proc. Roy. Soc. (London) A150: 552.Google Scholar
  3. Burchard W. 1965. Ñber die Abweichungen von der idealen Knäuelstatistik bei Amylose-und Cellulose-tricarbanilaten in einem Θ-Lösungsmittel. Makromol. Chem. 88: 11-28.Google Scholar
  4. Burchard W. 1983. Static and dynamic light scattering from branched polymers and biopolymers. Adv. Polym. Sci. 48: 1-124 (see pp. 85-92).Google Scholar
  5. Burchard W. 1985. New aspects of polymer characterization by dynamic light scattering. Chimia 39: 10-18.Google Scholar
  6. Burchard W. 1986. Theory of cyclic macromolecules. In: Semlyen J.A. (ed.) Cyclic Polymers. Elsevier, London and New York, pp. 43-64, Eq. 93.Google Scholar
  7. Burchard W. and Schmidt M. 1979. The diffusion coefficient of branched poly(vinyl-acetate) and poly(vinylacetate) microgels measured by quasi-elastic light scattering. Ber. Bunsenges. Phys. Chem. 83: 388-391.Google Scholar
  8. Burchard W. and Schulz L. 1989. Lösungsstruktur von Cellulose 2. 5-Acetaten. Papier 43: 665-674.Google Scholar
  9. Burchard W., Schmidt M. and Stockmayer W.H. 1980. Information on poly-dispersity and branching from combined quasi-elastic light scattering. Macromolecules 13: 1265-1272.Google Scholar
  10. De Gennes P.-G. 1979. Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NY.Google Scholar
  11. Demeter J., Mormann W., Schmidt J. and Burchard W. 2003. Structure in solution of trimethylsilyl cellulose in dependence on the degree of substitution. Macromolecules (submitted).Google Scholar
  12. Einstein A. 1905a. On the movement of small particles suspended in stationary liquids required by the molecular kinetics theory of heat. Ann. Phys. 17: 549-560.Google Scholar
  13. Einstein A. 1905b. Eine neue Bestimmung der Moleküldimensionen. Ph.D. Thesis, ETH Zürich, Switzerland.Google Scholar
  14. Engelskirchen K. 1987. Polysaccharidderivate. In: Bartl H. and Falbe J. (eds) Makromolekulare Stoffe, Houben-Weyl E20: 2047-2136.Google Scholar
  15. Flory P.J. 1942. Thermodynamics of high polymer solutions. J. Chem. Phys. 10: 51-61.Google Scholar
  16. Flory P.J. 1953. Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY.Google Scholar
  17. Flory P.J. 1956a. Statistical thermodynamics of semi-flexible chain molecules. Proc. Roy. Soc. (London) A 234: 60-73.Google Scholar
  18. Flory P.J. 1956b. Phase equilibria in solutions of rod-like particles. Proc. Roy. Soc (London) A 234: 73-88.Google Scholar
  19. Frank H.S. and Evans M.W. 1945. J. Chem. Phys. 13: 507.Google Scholar
  20. Freed K.F. 1987. Renormalization Group Theory of Macromolecules. John Wiley, New York.Google Scholar
  21. Gagnaire D., Saint-Germain J. and Vincedon M. 1983. NMR evidence of hydrogen bonds in cellulose solutions. J. Appl. Polym. Symp. 37: 261-275.Google Scholar
  22. Huggins M.L. 1942. J. Phys. Chem. 46: 151.Google Scholar
  23. Huglin M.B. 1972. Light Scattering from Polymer Solutions. Academic Press, London.Google Scholar
  24. Kamide K. and Saito M. 1984. Effect of total degree of substitution on molecular parameters of cellulose acetate. Eur. Polym. J. 20: 903-914.Google Scholar
  25. Kirkwood J.G. and Riseman J. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16: 565-573.Google Scholar
  26. Klemm D., Heinze T.J., Philipp B. and Wagenknecht W. 1997. New approach to advanced polymers by selective functionalization. Acta Polym. 48: 277-297.Google Scholar
  27. Klohr E. and Zugenmaier P. 1997. Polymer-solvent interaction of molecular dispersed and supramolecular structures of cellulose urethanes. Macromol. Symp. 120: 219-230.Google Scholar
  28. Kötz J., Bogen I., Heinze U., Heinze T.J. and Klemm D. 1998. Colloidal properties of statistically, block-like and regio-selectively substituted carboxymethyl celluloses. Papier 52: 704-712.Google Scholar
  29. Mann G., Kunze J., Loth F. and Fink H.-P. 1998. Cellulose ethers with a block-like distribution of the substituents by structureselective derivatization of cellulose. Polymer 39: 3155-3165.Google Scholar
  30. Mormann W. and Demeter J. 1999. Silylation of cellulose with hexamethyldisilazane in liquid ammonia. First examples of completely trimethylsilylated cellulose. Macromolecules 32: 1706-1710.Google Scholar
  31. Mormann W. and Demeter J. 2000. Controlled desilation of cellulose with stoichiometric amounts of water in the presence of ammonia. Macromol. Chem. Phys. 201: 163-168.Google Scholar
  32. Nerger D. 1978 Synthese und Eigenschaften von Pol(vinylacetate)-Mikrogelen und ihre Kopplung zu Radial-Blockcopolymeren und Netzwerken. Ph.D. Thesis, University of Freiburg, Germany.Google Scholar
  33. Petzold D., Klemm D., Savin G. and Burchard W. 2003. Investigations on structure of regio-selectively functionalized celluloses in solution, examplified by 3-O-alkyl ethers and using light scattering. Cellulose (to be published).Google Scholar
  34. Potthast A., Rosenau T., Buchner R., Roeder T., Ebner G., Bruglachner H., Sixta H. and Kosma P. 2002. The cellulose solvent N,N-dimethylacetaminide/lithium chloride revisited: The effect of water on physico-chemical properties and chemical stability. Cellulose 9: 41-53.Google Scholar
  35. Rahn K., Heinze T.J., Schmidt J. and Burchard W. 2003. Structure and solubility in THF of cellulose tosylates of various degrees of substitution. Cellulose (manuscript in preparation).Google Scholar
  36. Schmidt M., Nerger D. and Burchard W. 1979. Quasi-elastic light scattering on branched polymers: Part 1. Branched poly(vinylacetates) and poly(vinylacetate) microgels. Polymer 20: 582-588.Google Scholar
  37. Schulz L. and Burchard W. 1993. Lösungsstruktur verschiedener Cellulose Derivate, Polysaccharidforschung, Ergebnisberichte 1987-1993, pp. 9-30.Google Scholar
  38. Schulz L., Seger B. and Burchard W. 2000. Structures of cellulose in solution. Macromol. Chem. Phys. 201: 208-222.Google Scholar
  39. Tanford C. 1973. The Hydrophobic Effect. Wiley, New York.Google Scholar
  40. Wegner G. 1992. Photochemistry and photophysics of nanocomponents prepared from rod-like macromolecules by LB-technique. Mol. Cryst. Liq. Cryst. 216: 7-12.Google Scholar
  41. Wenzel M., Burchard W. and Schätzel K. 1986. Dynamic light scattering from semidilute cellulose tri-carbanilate solutions. Polymer 27: 195-201.Google Scholar
  42. Zugenmaier P. and Derleth Ch. 1998. Phase behavior, structure and properties of regio-selectively substituted cellulose derivatives in the liquid-crystalline state. ACS Symp. Ser. 688: 239-252.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Walther Burchard
    • 1
  1. 1.Institute of Macromolecular ChemistryAlbert-Ludwigs-University of FreiburgFreiburgGermany

Personalised recommendations