Skip to main content
Log in

Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the Principle Component Analysis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genotypic variations and correlations were estimated for sugar and acid contents on afresh flesh weight basis in peach and nectarine genotypes derived from a clone of a wild peach (Prunus davidiana) by three generations of crosses with commercial nectarine varieties. 107genotypes were studied in Avignon (France), 40 in Gotheron (France), and 18 of them were common to both locations. Considerable variations in sugar and acid contents were found among genotypes in both locations. Though location significantly affected sucrose, sorbitol and acid contents of the18 common genotypes, principal component analysis (PCA) indicated that genotypic correlations among sugar and acid contents were stable in both locations. Almost all sugars and acids analysed exhibited positive loadings for the first principal component (PC). Variations of dry matter content among genotypes only partially explained this general trend as shown by the PCA on a dry flesh weight basis. Glucose and fructose contents were closely correlated and were similar in amount inmost genotypes, while fructose content was lower than glucose content in about 12% of the genotypes. A positive but loose relationship was found between malic and citric acid contents in both locations. Likewise, sucrose, sorbitol and quinic acid contents were positively associated. The first PC could be used as a general flavour component. In addition, three groups of closely associated variables (fructose and glucose; malic and citric acids; sucrose, sorbitol and quinic acid) were detected through PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anet, E.F.L.J. & T.M. Reynolds, 1953. Isolation of l-quinic acid from the peach fruit. Nature 172: 1188-1189.

    Article  CAS  Google Scholar 

  • Bassi, D. & R. Selli, 1990. Evaluation of fruit quality in peach and apricot. Adv Hort Sci 4: 107-112.

    Google Scholar 

  • Becker, R.A., J.M. Chambers & A.R. Wilks, 1988. The New S Language. In: Wadsworth & Brooks (Eds.), A Programming Environment For Data Analysis and Graphics, pp. 69-75, 402. Cole Advanced Books & Software, Pacific Grove, California.

    Google Scholar 

  • Bernachi, D., T. Beck-Bunn, Y. Eshed, J. Lopez, V. Petiard, J. Uhlig, D. Zamir & S. Taksey, 1998. Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97: 381-397.

    Article  Google Scholar 

  • Broschat, T.K., 1979. Principal component analysis in horticultural research. HortScience 14: 114-117.

    CAS  Google Scholar 

  • Chapman, G.W. Jr. & R.J. Horvat, 1990. Changes in nonvolatile acids, sugars, pectin and sugar composition of pectin during peach (cv Monroe) maturation. J Agric Food Chem 38: 383-387.

    Article  CAS  Google Scholar 

  • Dirlewanger, E., A. Moing, C. Rothan, L. Svanella, V. Pronier, A. Guye, C. Plomion & R. Monet, 1999. Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98: 18-31.

    Article  CAS  Google Scholar 

  • Doty, T.E., 1976. Fructose sweetness: a new dimension. Cereal Foods World 21: 62-63.

    Google Scholar 

  • Esti, M., M.C. Messia, F. Sinesio, A. Nicotra, L. Conte, E.L. Notte & G. Palleschi, 1997. Quality evaluation of peaches and nectarines by electrochemical and multivariate analyses: relationships between analytical measurements and sensory attributes. Food Chem 60: 659-666.

    Article  CAS  Google Scholar 

  • Etienne, C., C. Rothan, A. Moing, C. Plomion, C. Bodénès, L. Svanella-Dumas, P. Cosson, V. Pronier, R. Monet & E. Dirlewanger, 2002. Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105: 145-159.

    Article  PubMed  CAS  Google Scholar 

  • Fulton, T.M., S. Grandillo, T. Beck-Bunn, E. Fridman, A. Frampton, J. Lopez, V. Petiard, J. Uhlig, D. Zamir & S.D. Tanksley, 2000. Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100: 1025-1042.

    Article  CAS  Google Scholar 

  • Fulton, T.M., T. Beck-Bunn, D. Emmatty, Y. Eshed, J. Lopez, V. Petiard, J. Uhlig, D. Zamir & S.D. Tanksley, 1997. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95: 881-894.

    Article  CAS  Google Scholar 

  • Génard, M. & C. Bruchou, 1992. Multivariate analysis of within-tree factors accounting for the variation of peach fruit quality. Sci Hort 52: 37-51.

    Article  Google Scholar 

  • Génard, M. & M. Souty, 1996. Modeling the peach sugar contents in relation to fruit growth. J Amer Soc Hort Sci 121: 1122-1131.

    Google Scholar 

  • Gomez, L., E. Rubio & M. Augé, 2002. A new procedure for extraction and measurement of solible sugars in ligneous plants. J Sci Food Agric 82: 360-369.

    Article  CAS  Google Scholar 

  • Gurrieri, F., J.M. Audergon, G. Albagnac & M. Reich, 2001. Soluble sugars and carboxylic acids in ripe apricot fruit as parameters for distinguishing different cultivars. Euphytica 117: 183-189.

    Article  CAS  Google Scholar 

  • Iezzoni, A.F. & M.P. Pritts, 1991. Applications of principal component analysis to horticultural research. HortScience 26: 334-338.

    Google Scholar 

  • Ishida, M., A. Inaba & Y. Sobajima, 1971. Seasonal changes in the concentration of sugars and organic acids in peach fruits. Sci Rpt Kyoto Prefecture Univ Agr 23: 18-23.

    Google Scholar 

  • Kervella, J., F. Pfeiffer & T. Pascal, 1992. Perception et appréciation des pêches douces par les consommateurs. Agro-Industrie et Méthodes Statistiques, Montpellier 30 novembre et 1er décembre 108-111.

  • Kervella, J., T. Pascal, F. Pfeiffer & E. Dirlewanger, 1998. Breeding for multiresistance in peach tree. Acta Hort 465: 177-184.

    Google Scholar 

  • Marini, R.P. & J.R. Trout, 1984. Sampling procedures for minimizing variation in peach fruit quality. J Am Soc Hort Sci 109: 361-364.

    Google Scholar 

  • Monet, R., 1979. Transmission génétique du caractère 'fruit doux' chez le pêcher. Incidence sur la sélection pour la qualité. Eucarpia Fruit Section, Tree Fruit Breeding, Angers, Fance, INRA 273-276.

  • Moriguchi, T., T. Sanada & S. Yamaki, 1990a. Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. J Amer Soc Hort Sci 115: 278-281.

    CAS  Google Scholar 

  • Moriguchi, T., Y. Ishizawa & T. Sanada, 1990b. Differences in sugar composition in Prunus persica fruit and the classification by the Principal Component Analysis. J Japan Soc Hort Sci 59: 307-312.

    CAS  Google Scholar 

  • Pangborn, R.M., 1963. Relative taste of selected sugars and organic acids. J Food Sci 28: 726-733.

    Google Scholar 

  • Robertson, J.A., R.J. Horvat, B.G. Lyon, F.I. Meredith, S.D. Senter & W.R. Okie, 1990. Comparison of quality characteristics of selected yellow-and white-fleshed peach cultivars. J Food Sci 55: 1308-1311.

    Google Scholar 

  • Ryugo, K., 1964. Relationship between malic and citric acids and titratable acidity in selected peach and nectarine clones, Prunus Persica, Batsch. Proc Amer Soc Hort Sci 85: 154-160.

    CAS  Google Scholar 

  • Salvador, M.E., L.A. Lizana, L.E. Luchsinger, E. Alonso & E. Loyola, 1998. Locality effect on some fruit quality parameters in peaches and nectarines. Acta Hort 465: 447-454.

    Google Scholar 

  • Sandhu, S.S., B.S. Dhillon & J.S. Randhawa, 1983. Chromatograghic estimation of sugars from the components of developing fruits of early-and late-maturing peach cultivars. J Hortic Sci 58: 197-202.

    CAS  Google Scholar 

  • Souty, M. & P. André, 1975. Composition biochimique et qualité des pêches. Annales de technologie agricole 24: 217-236.

    CAS  Google Scholar 

  • Sweeney, J.P., V.J. Chapman & P.A. Hepner, 1970. Sugar, acid and flavor in flesh fruits. J Am Diet Assoc 57: 432-435.

    PubMed  CAS  Google Scholar 

  • Wills, R.B.H., F.M. Scriven & H. Greefield, 1983. Nutrient composition of stone fruit (Prunus spp.) cultivars: apricot, cherry, nectarine, peach and plum. J Sci Food Agri 34: 1383-1389.

    CAS  Google Scholar 

  • Wu, B.H., M. Génard, F. Lescourret, L. Gomez & S.H. Li, 2002. Influence of the assimilate and water supply on seasonal variation of acids in peach (cv. Suncrest). J Sci Food Agri 82: 1829-1836.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Quilot, B., Kervella, J. et al. Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the Principle Component Analysis. Euphytica 132, 375–384 (2003). https://doi.org/10.1023/A:1025089809421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025089809421

Navigation