Skip to main content
Log in

Ohmic interelectrode voltage drop in alumina reduction cells

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The large gas bubbles underneath the anode in Hall–Héroult cells not only affect the ohmic interelectrode resistance by decreasing the cross-sectional area available for current transport. They also exhibit a strong effect on the current distribution in the bubble-free layer, substantially increasing the resistance. Available relationships applied in aluminium industry do not take this effect into account. A review on attempts to describe the interelectrode resistance is given, and an improved relationship derived from a finite element model is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ginsberg, Chemie-Ing.-Tech. 33 (1961) 80.

    Google Scholar 

  2. J. Thonstad, A. Solbu and A. Larsen, J. Appl. Electrochem. 1 (1971) 261.

    Google Scholar 

  3. W. Haupin in B. Welch (Ed.), 'LightMet als 1998' (Minerals, Metals & Materials Soc., Warrendale, 1998), p. 531.

    Google Scholar 

  4. W. Haupin and H. Kvande in R.D. Peterson (Ed.), 'Light Metals 2000' (Minerals, Metals & Materials Soc., Warrendale, 2000), p. 379.

    Google Scholar 

  5. H. Vogtand J. Thonstad, J. Appl. Electrochem. 32 (2002) 241.

    Google Scholar 

  6. T.M. Hyde and B.J. Welch in R. Huglen (Ed.), 'LightMetals 1997' (Minerals, Metals & Materials Soc., Warrendale, 1997), p. 333.

    Google Scholar 

  7. J.C. Maxwell, ‘A Treatise on Electricity and Magnetism’, 3rd edn, Vol. 1 (Clarendon Press, Oxford 1892), p. 440; 2nd edn, Vol. 1 (Clarendon Press, Oxford, 1881), p. 435.

    Google Scholar 

  8. D.A.G. Bruggeman, Ann. Physik (Leipzig) 24 (1934) 626.

    Google Scholar 

  9. R.E. de la Rue and C.W. Tobias, J. Electrochem. Soc. 106 (1959) 827.

    Google Scholar 

  10. R.E. Meredith and C.W. Tobias, Adv. Electrochem. Electrochem. Eng. 2 (1962) 15.

    Google Scholar 

  11. S. Prager, Physica 29 (1963) 129.

    Google Scholar 

  12. J.C.R. Turner, Two-phase conductivity, Chem. Eng. Sci. 31 (1976) 487.

    Google Scholar 

  13. H. Vogt, Elektrochemische Reaktoren mit Gasentwicklung, in 'Fortschritte der Verfahrenstechnik', Vol. 16 (VDI-Verlag, Düsseldorf, 1978), p. 297.

    Google Scholar 

  14. H. Vogt, Electrochemical reactors with gas evolution, in Fortschritte der Verfahrenstechnik', Vol. 20 (VDI-Verlag, Düsseldorf, 1982), p. 369

    Google Scholar 

  15. H. Vogt, Gas evolving electrodes, in E. Yeager, J.O'M. Bockris, B.E. Conway and S. Sarangapani (Eds), 'Comprehensive Treatise of Electrochemistry', Vol. 6 (Plenum, New York, 1983), p. 455.

    Google Scholar 

  16. C.W. Tobias, J. Electrochem. Soc. 106 (1959) 833.

    Google Scholar 

  17. R.B. MacMullin in: J.S. Sconce (Ed.), 'Chlorine. Its Manufacture, Properties and Uses' (Reinhold, New York, 1962), p. 157.

    Google Scholar 

  18. F. Hine, M. Yasuda, R. Nakamura and T. Noda, J. Electrochem. Soc. 122 (1975) 1185.

    Google Scholar 

  19. H. Vogt, Electrochim. Acta 26 (1981) 1311; 27 (1982) 1157.

    Google Scholar 

  20. L.J.J. Janssen and G.J. Visser, J. Appl. Electrochem. 21 (1991) 386.

    Google Scholar 

  21. L.J.J. Janssen and G.J. Visser, J. Appl. Electrochem. 21 (1991) 753.

    Google Scholar 

  22. L.J.J. Janssen and E. Barendrecht, Electrochim. Acta 28 (1983) 341.

    Google Scholar 

  23. H. Vogt, Physico-Chem. Hydrodyn. 8 (1987) 373.

    Google Scholar 

  24. H. Vogt, J. Appl. Electrochem. 29 (1999) 1155

    Google Scholar 

  25. H. Riegel, J. Mitrovic and K. Stephan, J. Appl. Electrochem. 28 (1998) 10.

    Google Scholar 

  26. J. Eigeldinger and H. Vogt, Electrochim. Acta 45 (2000) 4449.

    Google Scholar 

  27. R.J. Balzer and H. Vogt, J. Electrochem. Soc., 150 (2003).

  28. M. Raja, H.-D. Kleinschrodtand H. Vogt, Two-phase flow instability in vertical interelectrode gaps - A numerical simulation with FLOTRAN, 19th CAD-FEM Users Meeting 2001, International Congress on 'FEM Technology' (Potsdam, Germany) Vol. 1, Nr. 1.6.11.

  29. P.J. Sides and C.W. Tobias, J. Electrochem. Soc. 127 (1980) 288.

    Google Scholar 

  30. P.J. Sides and C.W. Tobias, J. Electrochem. Soc. 129 (1982) 2715.

    Google Scholar 

  31. H. Vogt, J. Appl. Electrochem. 13 (1983) 87.

    Google Scholar 

  32. J. Dukovic and C.W. Tobias, J. Electrochem. Soc. 134 (1987) 331.

    Google Scholar 

  33. S.D.R. Wilson and A. Hulme, Proc. R. Soc. Lond. A 387 (1983) 133.

    Google Scholar 

  34. O. Lanzi and R.F. Savinell, J. Electrochem. Soc. 130 (1983) 799.

    Google Scholar 

  35. J. Xue and H.A. Øye in J. Evans (Ed.), 'LightMetals 1995' (Minerals, Metals & Materials Soc., Warrendale, 1997), p. 265.

    Google Scholar 

  36. R.J. Aaberg, V. Ranum, K. Williamson and B.J. Welch, in R. Huglen (Ed.), 'LightMetals 1997' (Minerals, Metals & Materials Soc., Warrendale, 1997), p. 341.

    Google Scholar 

  37. A. Solheim and J. Thonstad, R.E. Miller (Ed.), 'LightMetals 1986' (Metallurg Soc. AIME, Warrendale, 1986), p. 397.

    Google Scholar 

  38. E.W. Dewing, Can. Metallurg. Quart. 30 (1991) 153.

    Google Scholar 

  39. S. Fortin, M. Gerhardt and A.J. Gesing, in J.P. McGreer (Ed.), 'LightMetals 1984' (Metallurg. Soc. AIME, Warrendale, 1984), p. 721.

    Google Scholar 

  40. H. Vogt, J. Appl. Electrochem. 29 (1999) 137.

    Google Scholar 

  41. N.E. Richards, in B. Welch (Ed.), 'LightMetals 1998' (Minerals, Metals & Materials Soc., Warrendale, 1998)

    Google Scholar 

  42. J. Zoric and A. Solheim, J. Appl. Electrochem. 30 (2000) 787.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, H., Kleinschrodt, HD. Ohmic interelectrode voltage drop in alumina reduction cells. Journal of Applied Electrochemistry 33, 563–569 (2003). https://doi.org/10.1023/A:1024959807438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024959807438

Navigation