Skip to main content
Log in

Phosphorus distribution in sediments of Morales Stream (tributary of the Matanza-Riachuelo River, Argentina). The influence of organic point source contamination

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Increased discharges of organic matter from different sources in Morales Stream, one of the main tributaries of the Matanza-Riachuelo River, caused not only an increase in its primary production but also drastic changes in the composition of its sediments, thus favoring eutrophication processes. An in situ study was carried out in order to assess the effects of an organic point source contamination (from intensive cattle rearing) on the sediments of Morales Stream. Surface water and sediment samples were analysed to determine the chemical characteristics of the water–sediment system. The amounts and forms of sediment phosphorus were determined using the `EDTA method' (Golterman, 1996) at two sites of the stream having different nutrient loads. The increase in the organic load of Morales Stream waters influences the dynamics of sediment P, producing two main effects: (1) an increase in the organic matter amount of the sediment that leads to an increase in the amount of P associated to organic fractions, which may be released by bacterial activity under anoxic conditions; and (2) a decrease in the concentration of P in the fraction bound to iron. Morales Stream sediments may act as a potential source of P, which can release this nutrient to water under the reducing conditions originated by uncontrolled discharges of organic residues to this water body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, L. E. & C. D. Moodie, 1965. Carbonate. In Black, C. A. (ed.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. ASA, Science Society of America, Madison, Wisconsin, U.S.A.: 1379-1396.

    Google Scholar 

  • APHA, AWWA, WPCF, 1992. Métodos Normalizados Para el Análisis de Aguas Potables y Residuales. Ed. Díaz de Santos, S.A. Madrid, España: 1816 pp.

    Google Scholar 

  • Bargiela, M., A. Rendina & A. F. de Iorio, 1997. Determinación de fósforo total en suelos de la pampa deprimida. R. Internacional Información Tecnológica 8/6: 147-152.

    Google Scholar 

  • Boström, B., I. Ahlgren & R. Bell, 1985. Internal nutrient loading in a eutrophic lake, reflected in seasonal variations of some sediment parameters. Verh. int. Ver. Limnol. 22: 3335-3339.

    Google Scholar 

  • CEMR (Comité Ejecutor del Plan de Gestión Ambiental y de Manejo de la Cuenca Hídrica Matanza-Riachuelo), 1997. Extracto de la propuesta del plan de gestión ambiental y manejo de la cuenca Matanza-Riachuelo, ENGEVIX-COWI-ICONAS, 5: 20-21.

    Google Scholar 

  • De Groot, C. J. & H. L. Golterman, 1990. Sequential fractionation of sediment phosphate. Hydrobiologia 192: 143-148.

    Google Scholar 

  • De Groot, C. J. & H. L. Golterman, 1993. On the presence of organic phosphate in some Camargue sediments: evidence for the importance of phytate. Hydrobiologia 252: 117-126.

    Google Scholar 

  • Farmer, J. G., 1994. Phosphorus fractionation and mobility in Loch Leven sediments. Aquat. Conserv. Mar. Freshwat. Ecosyst. 4: 45-56.

    Google Scholar 

  • Gächter, R. & J. S. Meyer, 1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253: 103-121.

    Google Scholar 

  • Gächter, R., J. S. Meyer & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33: 1542-1558.

    Google Scholar 

  • Golterman, H. L., 1984. Sediments, modifying and equilibrating factors in the chemistry of freshwater. Verh. int. Ver. Limnol. 22: 23-59.

    Google Scholar 

  • Golterman, H. L., 1995. The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue (southern France). Hydrobiologia 315: 39-58.

    Google Scholar 

  • Golterman, H. L., 1996. Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods. Hydrobiologia 335: 87-95.

    Google Scholar 

  • Golterman, H. L., 1998. Presence of and phosphate release from polyphosphates or phytate phosphate in lake sediments. Hydrobiologia 364: 99-104.

    Google Scholar 

  • Golterman, H. L., 2001a. Phosphate release from anoxic sediments or 'What did Mortimer really write?'. Hydrobiologia 450: 99-106.

    Google Scholar 

  • Golterman, H. L., 2001b. Fractionation and bioavailability of phosphates in lacustrine sediments: a review. Limnetica 20: 15-29.

    Google Scholar 

  • Graf, G., 1982. Benthic response to sedimentation of a spring phytoplankton bloom process and budget. Mar. Biol. 67: 201-208.

    Google Scholar 

  • Graf, G., 1989. Benthic-pelagic coupling in a deep-sea benthic community. Nature 341: 437-439.

    Google Scholar 

  • Harper, D. M., 1992. Eutrophication of Freshwaters: Principles, Problems and Restoration. Chapman and Hall, London: 327 pp.

    Google Scholar 

  • Herbes, S. E., H. E. Allen & K. H. Mancy, 1975. Enzymatic characterization of soluble organic phosphorus in lake water. Science (Washington, DC) 187: 432-434.

    Google Scholar 

  • Iorio A. F. de, 1999. Distribución y dinámica de las formas químicas de cobre en relación con el hierro y el manganeso, en un natracuol de la pampa deprimida. Tesis Magister Scientiae. EpG-FAUBA "Dr. Alberto Soriano", Buenos Aires.

    Google Scholar 

  • INTA (Instituto Nacional de Tecnología Agropecuaria), 1997. Carta de suelos de la RepÚblica Argentina. Hoja 3560-18 "General Las Heras". Buenos Aires, 75 pp.

    Google Scholar 

  • Itsvanovics, V., 1994. Fractional composition, adsorption and release of sediment phosphorus in the Kis-Balanton reservoir. Wat. Res. 28: 717-726.

    Google Scholar 

  • Jensen, M. H., E. Lomstein & J. Sorensen, 1990. Benthic NH4+ and NO3- flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Mar. Ecol. Prog. Ser. 61: 87- 96.

    Google Scholar 

  • Kleeberg, A. & G. Schlungbaum, 1993. In situ phosphorus release experiments in the Warnow River (Mecklenburg, northern Germany). Hydrobiologia 253: 263-274.

    Google Scholar 

  • Kleeberg, A. & P. Kozerski, 1997. Phosphorus release in Lake Größer Müggelsee and its implications for lake restoration. Hydrobiologia 342/ 343: 9-26.

    Google Scholar 

  • Lee, G. F.,W. C. Sonzogni & R. D. Spear, 1977. Significance of oxic vs. anoxic conditions for LakeMendota sediment phosphorus release. In Golterman, H. L (ed.), Interactions between Sediments and Fresh Water. Dr. W. Junk Publishers, The Hague: 294-306.

    Google Scholar 

  • Levesque, M. & M. Schnitzer, 1967. Characterization of model and soil organic matter-metal-phosphate complexes. Soil Science 103: 183-190.

    Google Scholar 

  • Lijklema, L., 1993. Considerations in modeling the sediment-water exchange of phosphorus. Hydrobiologia 253: 219-231.

    Google Scholar 

  • McKelvie, I. D., B. T. Hart & T. J. Cardwell, 1993. Speciation of dissolved phosphorus in environmental samples by gel filtration and flow-injection analysis. Talanta 40: 1981-1993.

    Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280-329.

    Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 30: 147-201.

    Google Scholar 

  • Montigny, C. & Y. T. Prairie, 1993. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiologia 253: 141-150.

    Google Scholar 

  • Murphy, J. & J. R. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. chim. Acta 27: 31-36.

    Google Scholar 

  • Newman & Reddy, 1993. Alkaline activity in the sediment-water column of a hypereutrophic lake. J. Envir. Qual. 22: 832-838.

    Google Scholar 

  • Psenner, R., R. Pucsko & M. Sager, 1984. Fractionation of organicand inorganic phosphorus compounds in lake sediments. Arch. Hydrobiol. Suppl. 70: 111-155.

    Google Scholar 

  • Prairie, Y., C. de Montigny & P. Giorgio. 2000. Phosphorus release from anoxic sediment: Mortimers paradigma revisited. Verh. int. Ver. Limnol. 27: 3787-3793.

    Google Scholar 

  • Petersen, W., K. Wallmann, P. Li, F. Schroeder & H. D. Knauth, 1996. The influence of diagenetic processes on the exchange of trace contaminants at the sediment-water interface. In Calmano, W. & U. Förstner (eds), Sediments and Toxic Substances. Springer V. B. H. Publ., New York: 37-50.

    Google Scholar 

  • Sallade, Y. E. & J. T. Sims, 1997.Phosphorus transformations in the sediments of Delaware+s Agricultural Drainageways: Effect of reducing conditions on phosphorus release. J. Envir. Qual. 26: 1579-1588.

    Google Scholar 

  • Slomp, C. P., W. Van Raaphorst, J. F. P. Malschaert, A. Kok & A. J. J. Sandee, 1993. The effect of deposition of organic matter on phosphorus dynamics in experimental marine sediment systems. Hydrobiologia 253: 83-98.

    Google Scholar 

  • Suzumura, M. & A. Kamatani, 1993. Isolation and determination of inositol hexaphosphate in sediments from Tokyo Bay. Geochim. Cosmochim. Acta 57: 2197-2202.

    Google Scholar 

  • Van PLiere, L., J. Peters, A. Mutijin & L. R. Mur, 1983. Release of sediment-phosphorus, and the influence of algae growth. Hydrobiol. Bull. 16: 191-200.

    Google Scholar 

  • Walkley, A., 1947. A critical examination of a rapid method for determining organic carbon in soil. Soil Sci. 63: 251-263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, A.R., de Iorio, A.F. Phosphorus distribution in sediments of Morales Stream (tributary of the Matanza-Riachuelo River, Argentina). The influence of organic point source contamination. Hydrobiologia 492, 129–138 (2003). https://doi.org/10.1023/A:1024874030418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024874030418

Navigation