Skip to main content
Log in

Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Eutrophication of surface waters can be accelerated by anthropogenic P-inputs, provided that P is in a form available to aquatic primary producers. Potentially algal-available P (Paa) under aerobic conditions was determined with a dual-culture assay from 172 samples representing P in point and nonpoint sources and in lacustrine matter. The availability of P – expressed as the proportion of Paa in total P (Tot-P) – ranged from 0 to 100%. In the different P sources, the mean availability ranged from 3.4 to 89% in descending order: wastewater of rural population > biologically treated urban wastewater > dairy house wastewater > biologically and chemically treated urban wastewater > field runoff > forest industrial effluent > fish fodder and feces > river water > field surface soil > forest runoff > lake settling matter > lake bottom sediments. Of the P fractions, dissolved reactive P (o-P) was highly available to algae, whereas particulate P (Ppart) and dissolved unreactive P (unr-Pdiss) contributed to Paa to a lower but varying degree. An approach based on source-dependent availability coefficients, derived from the algal assays, appeared promising in transforming the load of Tot-P into that of Paa. Although the values for Paa obtained by the dual-culture assay probably underestimate the true levels for ultimately available P, they may still give valuable information for eutrophication abatement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berge, D. & T. Källqvist, 1998. Biological availability of various Psources studied in different test systems. Verh. Int. Ver. Limnol. 26: 2401-2404.

    Google Scholar 

  • Boström, B., G. Persson & B. Broberg, 1988. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170/Dev. Hydrobiol. 48: 133-155.

    Google Scholar 

  • Bradford, M. E. & R. H. Peters, 1987. The relationship between chemically analysed phosphorus fractions and bioavailable phosphorus. Limnol. Oceanogr. 32: 1124-1137.

    Google Scholar 

  • Broberg, O. & G. Persson, 1988. Particulate and dissolved phosphorus forms in freshwater: composition and analysis. Hydrobiologia 170/Dev. Hydrobiol. 48: 61-90.

    Google Scholar 

  • Correll, D. L. 1998. The role of phosphorus in the eutrophication of receiving waters: a review. J. Environ. Qual. 27: 261-266.

    Google Scholar 

  • Cowen, W. F. & G. F. Lee, 1976. Phosphorus availability in particulate materials transported by urban runoff. J. Wat. Poll. Control Fed. 48: 580-591.

    Google Scholar 

  • DePinto, J. V. 1982. An experimental apparatus for evaluating kinetics of available phosphorus release from aquatic particulates. Wat. Res. 16: 1065-1070.

    Google Scholar 

  • DePinto, J. V., T. C. Young & S. C. Martin, 1981. Algal-available phosphorus in suspended sediments from lower Great Lakes tributaries. J. Great Lakes Res. 7: 311-325.

    Google Scholar 

  • Dorich, R. A., D. W. Nelson & L. E. Sommers, 1980. Algal availability of sediment phosphorus in drainage water of the Black Creek watershed. J. Environ. Qual. 9: 557-563.

    Google Scholar 

  • Dorioz, J. M., J. P. Pelletier & P. Benoit, 1998. Physico-chemical properties and bioavailability of particulate phosphorus of various origin in a watershed of Lake Geneva. Water Res. 32: 275-286. (In French, with an English abstract.)

    Google Scholar 

  • Dunn, O. J. 1964. Multiple contrasts using rank sums. Technometrics 6: 241-252.

    Google Scholar 

  • Ekholm, P. 1994. Bioavailability of phosphorus in agriculturally loaded rivers in southern Finland. Hydrobiologia 287: 179-194.

    Google Scholar 

  • Ekholm, P. & K. Krogerus, 1998. Bioavailability of phosphorus in purified municipal wastewaters. Wat. Res. 32: 343-351.

    Google Scholar 

  • Ekholm, P. & M. Yli-Halla, 1992. Reversibly adsorbed phosphorus in agriculturally loaded rivers in southern Finland. Aqua Fenn. 22: 35-41.

    Google Scholar 

  • Ekholm, P., O. Malve & T. Kirkkala, 1997. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhäjärvi (southwest Finland). Hydrobiologia 345: 3-14.

    Google Scholar 

  • Fabre, A., A. Qotbi, A. Dauta & V. Baldy, 1996. Relation between algal available phosphate in the sediments of the River Garonne and chemically-determined phosphate fractions. Hydrobiologia 335: 43-48.

    Google Scholar 

  • Finnish Standards Association SFS, 1996a. Water quality. Determination of suspended solids. Method by filtration through glass fibre filters SFS-EN 872. Finnish Standards Association SFS, Helsinki.

    Google Scholar 

  • Finnish Standards Association SFS, 1996b. Water quality. Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test), Part 3: Method using freeze-dried bacteria (ISO 11348-3:1998). Finnish Standards Association SFS, Helsinki.

    Google Scholar 

  • Fisher, T. R., J. M. Melack, J. U. Grobbelaar & R. W. Howarth, 1995. Nutrient limitation of phytoplankton and eutrophication of inland, estuarine and marine waters. In Phosphorus in the Global Environment. Ed. H Tiessen, pp 301-322. John Wiley & Sons, Chichester.

    Google Scholar 

  • Golterman, H. L. 1988. Reflections of fractionation and bioavailability of sediment bound phosphate. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 1-4.

    Google Scholar 

  • Golterman, H. L. 2001. Fractionation and bioavailability of phosphates in lacustrine sediments. Limnetica 20: 15-29.

    Google Scholar 

  • Golterman, H. L., C. C. Bakels & J. Jakobs-Mögelin, 1969. Availability of mud phosphates for the growth of algae. Verh Int. Ver. Limnol. 17: 467-479.

    Google Scholar 

  • Grobler, D. C. & E. Davies, 1979. The availability of sediment phosphate to algae. Water SA 5: 114-122.

    Google Scholar 

  • Hanna, M. 1989. Biologically available phosphorus: estimation and prediction using an anion-exchange resin. Can. J. Fish. Aquat. Sci. 46: 638-643.

    Google Scholar 

  • House, W. A., T. D. Jickells, A. C. Edwards, K. E. Praska & F. H. Denison, 1998. Reactions of phosphorus with sediments in fresh and marine waters. Soil Use Manage. 14: 139-146.

    Google Scholar 

  • Huttula, T. & T. Nõges (eds) 1998. Present state and future fate of Lake Võrtsjärv. Results from Finnish-Estonian joint project in1993-1997. The Finnish Environment 209, Finnish Environment Institute, Helsinki. 150 pp.

  • ISO, 1997. Water quality - Guide to analytical quality control for water analysis, ISO/TR 13530:1997(E). International Organization for Standardization, Genève.

    Google Scholar 

  • Jensen, H. S., P. B. Mortensen, F. Ø. Andersen, E. Rasmussen & A. Jensen, 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol. Oceanogr. 40, 908-917.

    Google Scholar 

  • Källqvist, T. & D. Berge, 1990. Biological availability of phosphorus in agricultural runoff compared to other phosphorus sources. Verh. Int. Ver. Limnol. 24: 214-217.

    Google Scholar 

  • Krogerus, K. & P. Ekholm, 1999. Availability of soil phosphorus to the green algae Selenastrum capricornutum. In Effect of Mineral-Organic-Microorganism Interactions on Soil and Freshwater Environments. Eds. J Berthelin, P M Huang, J-M Bollag & F Andreux, pp 253-260. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Meeuwig, J. J. & R. H. Peters, 1996. Circumventing phosphorus in lake management: a comparison of chlorophyll a predictions from land-use and phosphorus loading models. Can. J. Fish. Aquat. Sci. 53: 1795-1806.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36.

    Google Scholar 

  • Persson, P. 1990. Utilization of phosphorus in suspended particulate matter as tested by algal bioassays. Verh. Int. Ver. Limnol. 24: 242-246.

    Google Scholar 

  • Peter, R. H. 1981. Phosphorus availability in Lake Memphremagog and its tributaries. Limnol. Oceanogr. 26: 1150-1161.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 948-951.

    Google Scholar 

  • Priha, M. 1994. Bioavailability of pulp and paper mill effluent phosphorus. Wat. Sci. Tech. 29: 93-103.

    Google Scholar 

  • Rekolainen, S., P. Ekholm, B. Ulén & A. Gustafson, 1997. Phosphorus losses from agriculture to surface waters in the Nordic countries. In Phosphorus Loss from Soil to Water. Eds. H. Tunney, O. T. Carton, P. C. Brookes & A. E. Johnston. pp 77-93. CAB International.

  • Reynolds, C. S. & P. S. Davies, 2001. Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol. Rev. 76: 27-64.

    Google Scholar 

  • Ripl, W. & G. Lindmark, 1979. The impact of algae and nutrient composition on sediment exchange dynamics. Arch. Hydrobiol. 86: 45-65.

    Google Scholar 

  • Sharpley, A. N. 1993. An innovative approach to estimate bioavailable phosphorus in agricultural runoff using iron oxideimpregnated paper. J. Environ. Qual. 22: 597-601.

    Google Scholar 

  • Sharpley, A. N., W. W. Troeger & S. J. Smith, 1991. The measurement of bioavailable phosphorus in agricultural runoff. J. Environ. Qual. 20: 235-238.

    Google Scholar 

  • Sonzogni, W. C., S. C. Chapra, D. E. Armstrong & T. J. Logan, 1982. Bioavailability of phosphorus inputs to lakes. J. Environ. Qual. 11: 555-563.

    Google Scholar 

  • Vielma, J., T. Mäkinen, P. Ekholm & J. Koskela, 2000. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout (Oncorhynchus mykiss) and algal availability of phosphorus load. Aquaculture 183: 349-362.

    Google Scholar 

  • Zar, J. H. 1999. Biostatistical Analysis, 4th edn, Prentice-Hall, Englewood Cliffs, New Jersey. 663 p.

    Google Scholar 

  • Young, T. C., J. V. DePinto, S. E. Flint, M. S. Switzenbaum & J. K. Edzwald, 1982. Algal availability of phosphorus in municipal wastewater. J. Wat. Pollut. Control Fed. 54: 1505–1516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekholm, P., Krogerus, K. Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. Hydrobiologia 492, 29–42 (2003). https://doi.org/10.1023/A:1024857626784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024857626784

Navigation