Skip to main content
Log in

Dissolved iron:phosphate ratio as an indicator of phosphate release to oxic water of the inner and outer coastal Baltic Sea

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Pore water concentrations and benthic fluxes of dissolved Fe, P and N were measured at two coastal basins in the Gulf of Finland, northern Baltic Sea, during a seasonal cycle. The bioturbated inner coastal basin, where exchange of near-bottom water is efficient, had a better ability to retain P in sediments than the outer basin, where near-bottom water O2 concentration decreases during summer. Under the presence of O2 high pore water dissolved Fe:P ratio (>3.6 w:w) in surface layer of the sediment, measured especially in winter, indicated negligible or low P-release and high N:P ratio in the efflux. On the contrary, low Fe:P ratio (<3.6), measured in summer and autumn, indicated high efflux of P and low N:P flux ratio. The low dissolved Fe:P ratio suggested that there was not enough diffusing Fe to form Fe3+ oxide-rich layer in the oxic surface zone of the sediments or near-bottom water to bind the P diffusing from the sediment. However, in sediments bioturbated by the abundant bivalve Macoma baltica, small efflux of P were measured almost throughout the study period. Thus, the Fe:P ratio cannot alone explain the P-release in bioturbated sediments. The low N:P ratio in the efflux measured in summer and autumn partly explains the measured low N:P ratio in the near-bottom water and thus N limitation of primary production in the Gulf. Additionally, it is evident that the release of P in the Gulf itself is of great importance for the trophic state of the Gulf of Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anschutz, P., S. Zhong & B. Sundby, 1998. Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments. Limnol. Oceanogr. 43: 53-64.

    Google Scholar 

  • Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5-59.

    Google Scholar 

  • Campbell, P. & T. Torgersen, 1980. Maintenance of iron meromixis by iron redeposition in a rapidly flushed monimolimnion. Can. J. Fish. aquat. Sci. 37: 1303-1313.

    Google Scholar 

  • Canfield, D. E., 1989. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53: 619-632.

    Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316-318.

    Google Scholar 

  • Caraco, N. F., J. J. Cole & G. E. Likens, 1990. A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9: 277-290.

    Google Scholar 

  • Conley, J., A. Stockenberg, R. Carman, R.W. Johnstone, L. Rahm & F. Wulff, 1997. Sediment fluxes along a eutrophication gradient in the Gulf of Finland, Baltic Sea. Estuar. coast. shelf Sci. 45: 591-598.

    Google Scholar 

  • Einsele, W., 1938. Ñber chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemisch en und limnogeologischen Gesichtspunkten. Arch. Hydrobiol. 33: 361-387.

    Google Scholar 

  • Ekholm, P., 1998. Algal-available phosphorus originating from agriculture and municipalities. Monographs of the Boreal Environment Research. No. 11. 60 pp.

  • Ellis-Evans, J. C. & E. C. G. Lemon, 1989. Some aspects of iron cycling in maritime Antarctic lakes. Hydrobiologia 172: 149- 164.

    Google Scholar 

  • EN ISO 10304-1, 1995. Water quality - Determination of dissolved fluoride, chloride, nitrite, orthophosphate, bromide, nitrate and sulfate ions, using liquid chromatography of ions - Part 1: Method for water with low contamination (ISO 10304-1: 1992). 12 pp.

  • Gallagher, J. B., 1985. The influence of iron and manganese on nutrient cycling in shallow freshwater Antarctic lakes. In Siegfried, W. R., P. R. Condy & R. M. Laws (eds),Antarctic Nutrient Cycles and Food Webs. Springer-Verlag, Berlin: 234-237.

    Google Scholar 

  • Gallepp, G. W., J. F. Kitchell & S. M. Bartell, 1978. Phosphorus release from lake sediments as affected by chironomids. Verh. int. Ver. Limnol. 20: 458-465.

    Google Scholar 

  • Golterman, H. L., 1995. Theoretical aspects of the adsorption of ortho-phosphate onto iron hydroxide. Hydrobiologia 315: 59-68.

    Google Scholar 

  • Golterman. H. L., 2001. Phosphate release from anoxic sediments or 'What did Mortimer really write?' Hydrobiologia 450: 99-106.

    Google Scholar 

  • Gunnars, A. & S. Blomqvist, 1997. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions - an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37: 203-226.

    Google Scholar 

  • Gunnars, A., S. Blomqvist, P. Johansson & C. Andersson, 2002. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim. Cosmochim. Acta 66: 745-758.

    Google Scholar 

  • Gächter, R., J. S. Meyer, & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33: 1542-1558.

    Google Scholar 

  • Henriksen, K., M. B. Rasmussen & A. Jensen, 1983. Effect of bioturbation on microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlying water. Ecol. Bull. 35: 193-205.

    Google Scholar 

  • Hällfors, G., E. Leskinen & Å. Niemi, 1983. Hydrography, chlorophyll a and nutrients at the Tvärminne Storfjärd, Gulf of Finland in 1979/1980. Walter and Andrée de Nottbeck Foundations Scientific Reports 4: 1-19.

    Google Scholar 

  • Ingall, E. & R. Jahnke, 1997. Influence of water column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar. Geol. 139: 219-229.

    Google Scholar 

  • Jensen, H. S., P. B. Mortensen, F. O. Andersen, E. Rasmussen & A. Jensen, 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol. Oceanogr. 40: 908-917.

    Google Scholar 

  • Jørgensen, B. B., 1996a. Material flux in the sediment. In Jørgensen, B. B. & K. R. Richardson (eds), Eutrophication in Coastal Marine Ecosystems. Coastal and Estuarine Studies 52. American Geophysical Union, Washington, DC: 115-135.

  • Jørgensen, B. B., 1996b. Case Study - Aarhus Bay. In Jørgensen, B. B. & K. R. Richardson (eds), Eutrophication in Coastal Marine Ecosystems. Coastal and Estuarine Studies 52. American Geophysical Union, Washington, DC: 137-154.

  • Jørgensen, B. B. & N. P. Revsbech, 1983. Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl. Envir. Microbiol. 45: 1261-1270.

    Google Scholar 

  • Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen, E. Leskinen, R. Lignell, B. Marcussen & T. Tamminen 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38(5): 893-905.

    Google Scholar 

  • Koroleff, F., 1983. In Grasshoff, K., M. Ehrhardt & K. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Weinheim.

  • Kristensen, E., J. Bodenbender, M. H. Jensen, H. Rennenberg & K. M. Jensen, 2000. Sulfur cycling of intertidal Wadden Sea sediments (Koningshafen, Island of Sylt, Germany): sulfate reduction and sulfur gas emission. J. Sea Res. 43: 93-104.

    Google Scholar 

  • Krom, M. D. & R. A. Berner, 1981. The diagenesis of phosphorus in a near shore marine sediment. Geochim. Cosmochim. Acta 45: 207-216.

    Google Scholar 

  • Lehtoranta, J., 1998. Net sedimentation and sediment-water nutrient fluxes in the eastern Gulf of Finland (Baltic Sea). Vie Milieu 48: 341-352.

    Google Scholar 

  • Lovley, D. R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259-287.

    Google Scholar 

  • Mannio, J., A. Räike & J. Vuorenmaa, 2000. Finnish Lake Survey 1995: Regional characteristics of lake chemistry. Verh. int. Ver. Limnol. 27: 362-367.

    Google Scholar 

  • Mayer, L. M., F. P. Liotta & S. A. Norton, 1982. Hypolimnetic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine. Wat. Res. 16: 1189-1196.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single-solution method for the determination of phosphate in natural waters. Analyt. chim. Acta. 27: 31-36.

    Google Scholar 

  • Niemi, Å., 1975. Ecology of phytoplankton in the Tvärminne area SW coast of Finland. II. Primary production and environmental conditions in the archipelago zone and sea zone. Acta Bot. Fenn. 105: 1-73.

    Google Scholar 

  • Perttilä, M., P. Tulkki & S. Pietikäinen, 1980. Mean values and trends of chemical properties in the Gulf of Finland 1962-1978. Finnish Mar. Res. 247: 38-50.

    Google Scholar 

  • Pitkänen, H., J. Lehtoranta & A. Räike, 2001. Internal nutrient fluxes counteract decreases in external load: the case of the estuarial eastern Gulf of Finland, Baltic Sea. Ambio 30(4-5): 195-201.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of seawater. In Hill, M. N. (ed.), The Sea, Vol. 2. Wiley-Interscience, New York: 26-77.

    Google Scholar 

  • Revsbech, N. P., B. B. Jørgensen & T. H. Blackburn, 1980. Oxygen in the sea bottom measured with a microelectrode. Science 207: 1355-1356.

    Google Scholar 

  • Roden, E. E. & J. W. Edmonds, 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch. Hydrobiol. 139(3): 347-378.

    Google Scholar 

  • Rozan, T. F., M. Taillefert, R. E. Trouwborst, B. T. Glazer, Ma Shufen, J. Herszage, L. M. Valdes, K. S. Price & G. W. Luther III, Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnol. Oceanogr. 47: 1346-1354.

  • Sundby, B., C. Cobeil, N. Silverberg & A. Mucci, 1992. The phosphorus cycle in coastal marine sediments. Limnol. Oceanogr. 37: 1129-1145.

    Google Scholar 

  • Tallberg, P. & A.-S. Heiskanen, 1998. Species-specific phytoplankton sedimentation in relation to primary production along an inshore-offshore gradient in the Baltic Sea. J. Plankton Res. 20: 2053-2070.

    Google Scholar 

  • Tejedor-Tejedor, M. I. & M. A. Anderson, 1990. Protonation of phosphate on the surface of the goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir 6: 602-611.

    Google Scholar 

  • Tessenow, U., 1974. Solution diffusion and sorption in the upper layers of lake sediment. III. Reaction mechanisms and equilibria in the system iron-manganese-phosphate with regard to the accumulation of vivianite in Lake Ursee (in German with English summary). Arch. Hydrobiol. Suppl. 47: 1-79.

    Google Scholar 

  • Thamdrup, B., H. Fossing, & B. B. Jørgensen, 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58(23): 5115-5129.

    Google Scholar 

  • Zink-Nielsen, I., 1975. Intercalibration of chemical sediment analyses. Nordfors Miljövårdssekretariet, Publication no. 6: 1-19 (in Swedish).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehtoranta, J., Heiskanen, AS. Dissolved iron:phosphate ratio as an indicator of phosphate release to oxic water of the inner and outer coastal Baltic Sea. Hydrobiologia 492, 69–84 (2003). https://doi.org/10.1023/A:1024822013580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024822013580

Navigation