Skip to main content
Log in

Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Bogoria, in the Rift Valley of Kenya is an extreme saline lake (conductivity 40–80 mS cm−1, alkalinity 1500 m equ l−1). It is hydrologically more stable than the other, endorheic lakes in Kenya, because it is deep – maximum depth at present just over 10 m in an area of 3000 ha – and so does not have periods when it is dry. It is ecologically simple, with only one species dominating the phytoplankton – the cyanobacterium `spirulina', Arthrospira fusiformis. Its biomass and productivity were very high – biomass between 38 and 365 μg l−1 chlorophyll `a' and 3.4–21 × 103 coils ml−1 and net production between 0.24 and 1 gm C m3 h, the latter in a narrow zone of less than a metre. There were no macro-zooplankton in the plankton and the only grazer of A. fusiformis was the lesser flamingo, Phoeniconaias minor,which occurred irregularly in very high concentrations (in excess of 1 × 106). Detritivory in the benthos was effected by a single chironomid species, Paratendipes sp., at a maximum density of 4 × 104 m−2. The mean daily emergence of adult chironomids was estimated to be 1 × 103 m−2, the maximum 3. There was no littoral plant community within the lake but 44 dicotyledonous and 31 monocotyledonous plant species in the drawn-down zone and adjacent to it. A diverse draw-down terrestrial invertebrate fauna, only superficially described here, processed the flamingo feathers and carcasses, with other detritus such as chironomid pupal exuviae and decaying A. fusiformis scum. About 50 bird species depended upon the chironomids, either as they emerged through the water column as flying adults or later on the shoreline as floating pupal exuvia and dead adults. The lake has high conservation value because of three bird species in particular – lesser flamingo, Cape teal and black-necked grebe. The former provides real economic value in a region otherwise impoverished, because of the spectacle of tens of thousands of flamingos set against the landscape of hot springs and fumaroles at the lake edge, which draws 15 000 visitors per annum. P. minor has experienced three periods during the past ten years when major mortalities have occurred, the last of which killed 700 birds day−1. This could have involved as many as 200 000 birds (about 1/5th of the maximum population at this lake) if mortality was at a constant rate for the nine months it was observed. Causes of mortality have been suggested as avian tuberculosis, poisoning from cyanobacterial toxins or from heavy metal contamination at Lake Nakuru, but it is still not yet clear what contribution each makes to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agnew, A. D. Q. & S. Agnew, 1994. Upland Kenya Wild Flowers: A Flora of the Ferns and Herbaceous Flowering Plants of Upland Kenya. 2nd edn. East Africa Natural History Society, Nairobi.

  • Alonso-Andicoberry, L. Garcia-Villada, V. Lopez-Rodas & E. Costas, 2002. Catastrophic mortality of flamingos in a Spanish national park caused by cyanobacteria. The Vetinary Record 151: 706–707.

    Google Scholar 

  • Anon, 2003. Death of a lake: Lake Nakuru's disappearing catchment. Ecoforum Short Rains: 14–15.

  • Bartholomew, G. A. & C. J. Pennycuick, 1973. The flamingo and pelican populations of the Rift Valley lakes in 1968–69. East African Wildlife J. 11: 189–198.

    Google Scholar 

  • Beadle, L. C., 1981. The Inland Waters of Tropical Africa, 2nd edn. Longman: 475 pp.

  • Benenson, A. S. (ed.), 1990. Control of Communicable Diseases in Man. 15th edition. Washington DC: American Public Health Association.

    Google Scholar 

  • Bennun, L. A. & O. Nasirwa, 2000. Trends in waterbird numbers in southern Rift Valley of Kenya. Ostrich 71: 220–226.

    Google Scholar 

  • Bennun, L. & P. Ngoroge, 1999. Important Bird Areas in Kenya. Nairobi: Nature Kenya; The East Africa Natural History Society.

    Google Scholar 

  • Brown, L. H., 1959. The Mystery of the Flamingos, London: Country Life Ltd. 116 pp.

    Google Scholar 

  • Brown, L., 1979. Encounters with Nature. Chapter 6; Flamingos. Oxford University Press, Oxford: 67–89.

    Google Scholar 

  • Brown, L. H. & P. L. Britton, 1980. The Breeding Seasons of East African Birds. Nairobi: The East Africa Natural History Society.

    Google Scholar 

  • Brown, L. H. & A. Root, 1971. The breeding behaviour of the lesser flamingo Phoeniconaias minor. Ibis 113: 147–172.

    Google Scholar 

  • Chalié, F. & F. Gasse, 2002. Late glacial-holocene diatom record of water chemistry and lake level change from the tropical East African Rift lake Abiyata (Ethiopia). Palaeogeography, Palaeoclimatology, Palaeoecology 187: 259–283.

    Google Scholar 

  • Constanza R., R. d'Arge, R. de Groot, S. Farber, M. G rasso, B. Hannon, K. Limburg, S. Naeem, R. V. O'Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. van den Belt, 1997. The value of the worlds' ecosystem services and natural capital. Nature 387: 253–260

    Google Scholar 

  • Cooper, J. E., L. Karstad & E. Boughton, 1975. Tuberculosis in Lesser Flamingos in Kenya. J. Wildlife Diseases 11: 32–36.

    Google Scholar 

  • Davies, T. D., C. E. Vincent & A. K. C. Beresford, 1985. July– August rainfall in west-central Kenya. J. Climatol. 5: 17–33.

    Google Scholar 

  • Duckworth, A. W., W. D. Grant, B. E. Jones & R. van Steenbergen, 1996. Phylogenetic diversity of soda lake alkliphiles. FEMS Microbiol. Ecol. 19: 181–191.

    Google Scholar 

  • Escuté-Gasulla X., M. M. Pérez, L. F. Gonzålez-Solis & M.G. Süné, 2002. The Lesser Flamingo Expedition Kenya 2000–2001. Unpublished Report, University of Barcelona.

  • Evans, A. S. & H. A. Feldman, 1982. Bacterial Infections of Humans: Epidemiology and Control. London: Plenum MedicalBook Company.

    Google Scholar 

  • Gasse, F., 1986. East African Diatoms. Taxonomy, Ecological Distribution. Bibliotheca Diatomologica. Bd 11, J. Cramer, Stuttgart. 202 pp.

  • Grant, W. D., W. E. Mwatha & B. E. Jones, 1990. Alkaliphiles: ecology, diversity and applications. FEMS Microbiol. Rev. 75: 255–270.

    Google Scholar 

  • Gough, D., 2000. No haven as disease claims lives of 30 000 flamingos. The Guardian, 6 March 2000: 16.

  • Haines, R. W. & K. A. Lye, 1983. The Sedges and Rushes of East Africa. East Africa Natural History Society, Nairobi, Kenya.

    Google Scholar 

  • Harper J. L. & D. L. Hawksworth, 1994. Biodiversity: measurement and evaluation. Phil. Trans. r. Soc. Lond. B. 345: 5–12.

    Google Scholar 

  • Hilton-Taylor, C. (eds), 2000. IUCN Red List of Threatened Species. International Union for the Conservation of Nature, Gland, Switzerland. 61 pp.

    Google Scholar 

  • Hindák, F., 1985. Morphology of trichomes in Spirulina fusiformis Voronichin from Lake Bogoria Kenya. Arch. Hydrobiol. Suppl. Algol Std. 38/9: 201–218.

    Google Scholar 

  • Jellison, R., A. Adams & J.M. Melack 2001. Re-appearance of rotifers in hypersaline Mono Lake, California, during a period of rising lake levels and decreasing salinity. Hydrobiologia 466: 39–43.

    Google Scholar 

  • Jenkin, P. M., 1936. Reports on the Percy Sladen Expedition to some Rift Valley Lakes in Kenya in 1929 VII. Summary of the ecological results with special reference to the alkaline lakes. Ann. Mag. Nat. Hist. Ser. 10, 18: 133–181.

    Google Scholar 

  • Jones, B. E., W. D. Grant, N. C. Colins & W. E. Mwatha, 1994. Alkaliphiles: diversity and identification. In Priest, F. G., A.

  • Ramos-Cormenzana & B. J. Tindall (eds), Bacterial Diversity and Systematics. Plenum Press: 195–229.

  • Kaliner, G. & J. E. Cooper, 1973. Dual infection of an African Fish Eagle with acid-fast bacilli and an Aspergillus sp. J. Wildlife Diseases 9: 51–55.

    Google Scholar 

  • Kock, N. D., R. A. Kock, J. Wambua, G. J. Kamau & K. Mohan, 1999. Mycobacterium avium-related epizootic in free-ranging lesser flamingos in Kenya. J. Wildlife Diseases 35: 297–300.

    Google Scholar 

  • Koeman, J. H., J. H. Pennings, J. J. M. de Goeij, P. S. Tjioe, P. M. Olindo & J. Hopcraft, 1972. A preliminary survey of the possible contamination of Lake Nakuru in Kenya with some metals and chlorinated hydrocarbon pesticides. J. appl. Ecol. 9: 411–416.

    Google Scholar 

  • Krienitz, L., A. Ballot, K. Kotut, C. Weigand, S. Putz, J. S. Metcalf, G. A. Codd & S. Pflugmacher, 2003. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol. Ecol. 43: 141–148.

    Google Scholar 

  • LaVigne, M. & G. Ashley, 2001. Climatology and Rainfall Patterns: Lake Bogoria National Reserve (1976–2001). Unpublished thesis, New Hampshire College, Amherst MA, U.S.A. 32 pp + appendix.

    Google Scholar 

  • Legesse, D., F. Gasse, O. Radakovitch, C. Vallet-Culomb, R. Bonnefille, D. Verschuren, E. Gibert & P. Barker 2002. Environmental changes in a tropical lake (Lake Abiyata, Ethiopia) during recent centuries. Palaeogeography, Palaeoclimatology, Palaeoecology 187: 233–258.

    Google Scholar 

  • Livingstone, D. A. & J. M. Melack, 1984. Some lakes of sub-Saharan Africa. In Taub, F. B. (ed.), Ecosystems of the World 23, Lakes and Reservoirs. Elsevier, Amsterdam: 467–498.

    Google Scholar 

  • Melack, J. M., R. Jellison & D. B. Herbst (eds), 2001. Seventh International Conference on Salt Lakes (September 1999). Hydrobiologia 466: 1–347.

  • Melack J. M. & P. Kilham, 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 19: 743–755.

    Google Scholar 

  • Melack, J. M., 1981. Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81: 71–85.

    Google Scholar 

  • Melack, J. M., 1988, Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya). Hydrobiologia 158: 1–14.

    Google Scholar 

  • McCullough G., A. Aebischer & K. Irvine, 2003. Importance of small wetlands for migrations of African flamingos. Oryx, in press.

  • Nasirwa, 2000. Conservation statusd of flamingos in Kenya. Waterbirds 23 (Special Publication 1): 47–51.

  • Nasirwa, O. & L. A. Bennun, 1994. Waterbirds in the southern Kenyan Rift Valley, July 1993 and January 1994. Nairobi: The National Museums of Kenya.

    Google Scholar 

  • Nelson, Y. M., R. J. Thampy, G. K. Motelin, J. A. Raini, C. I. Difante & L. Wilson, 1998. Model for trace metal exposure in filter-feeding flamingos at alkaline Rift Valley lakes, Kenya. Environmental Toxicology and Chemistry 17: 2302–2309.

    Google Scholar 

  • Nilsson, E., 1932. Quarternary glaciations and pluvial lakes in British East Africa. Ph.D. Thesis, Centraltryckeriet, Stockholm:101+ 4 plates.

    Google Scholar 

  • Onkware, A. O., 1996. The Ecophysiology of Grass and Sedge Halophytes of Loburu Delta, Lake Bogoria National Reserve, Kenya. Unpublished thesis, Moi University, Kenya.

    Google Scholar 

  • Owino, A., J. O. Oyugi, O. O. Nasirwa & L. A. Bennun, 2001. Patterns of variation in waterbird numbers on four Rift Valley lakes in Kenya. Hydrobiologia 458: 45–53.

    Google Scholar 

  • Ratcliffe, H. L., 1946. Tuberculosis in captive wild birds. Am. Rev. Tuberculosis 54: 389–400.

    Google Scholar 

  • Sileo, L., J. G. Grootenhuis, C. H. Tuite & J. B. D. Hopcraft, 1979. Mycobacteriosis in the Lesser Flamingos of Lake Nakuru, Kenya. J. Wildlife Diseases 15: 387–389.

    Google Scholar 

  • Simmons, R. E., 2000. Declines and movements of lesser flamingos in Africa. Waterbirds 23 (Special Publication 1): 40–46.

  • Stephen, T. & J. Fanshawe, 2002. Field Guide to the Birds of East Africa. T & A. D. Poyser, London: 603 pp.

    Google Scholar 

  • Talling, J. F. & D. Driver, 1963. Some problems in the estimation of chlorophyll-a in phytoplankton. Proc. Conference of Primary Productivity Measurement, marine and Freshwater, Hawaii, 1961. U.S. Atomic Energy Comm., TID-7633: 142–146.

  • Talling, J. F. & I. B. Talling, 1965. The chemical composition of African lake waters. Int. Rev. ges. Hydrobiol. 50: 421–463.

    Google Scholar 

  • Talling, J. F., R. B. Wood, M. V. Prosser & R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwat. Biol. 3: 53–76.

    Google Scholar 

  • Tuite, C. H., 1979. Population size, distribution, and biomass density of the lesser flamingo in the eastern Rift Valley, 1974–76. J. appl. Ecol. 16: 765–775.

    Google Scholar 

  • Tuite, C. H., 2000. The distribution and density of Lesser Flamingos in East Africa in relation to food availability and productivity. Waterbirds 23 (Special Publication 1): 52–63.

  • Vareschi, E., 1978. The ecology of Lake Nakuru (Kenya) I. Abundance and feeding of the lesser flamingo. Oecologia (berl.) 32: 11–35.

    Google Scholar 

  • Vareschi, E., 1982. The ecology of Lake Nakuru (Kenya) III. Abiotic factors and primary production. Oecologia 55: 81–101.

    Google Scholar 

  • Vareschi, E., 1987. Saline lake ecosystems. In Schulze, E.-D. & H. Zwolfer (eds), Potentials and Limitations of Ecosystem Analysis. Springer-Verlag, Berlin: 347–363.

    Google Scholar 

  • Verschuren, D., C. Cocquyt, J. Tibby, C. N. Roberts & P. R. Leavitt, 1999. Long-term dynamics of algal and invertebrate communities in a small, fluctuating, tropical soda lake. Limnol. Oceanogr. 44: 1216–1231.

    Google Scholar 

  • Vosmarty, C. J., P. Green, J. Salisbury & R. B. Lammers, 2000. Global water resources: vulnerability from climate change and population growth. Science 289: 284–288.

    PubMed  Google Scholar 

  • Wilcox, B. A., 1984. In situ conservation of genetic resources: determinants of minimum area requirements. In Neeley, J. A. & K. R. Miller (eds), National Parks: Conservation and Development. Smithsonian Institution Press, Washington DC: 639–647.

    Google Scholar 

  • Weiss, E., 1989. Guide to Plants Tolerant of Arid and Semiarid Conditions: Nomenclature and Potential Uses. Margraf Scientific Publications, Germany/Ministry of Livestock Development, Kenya.

    Google Scholar 

  • Williams, J. G., 1967. A Field Guide to the National Parks of East Africa. Collins: 352 pp.

  • Wilson. E. O., (ed.), 1987. Technologies to Maintain Biological Diversity. US Office of Technology Assessment, Washington. Wilson, E. O. (ed.), 1988. BioDiversity. National Academy Press, Washington DC.

  • Wilson, E. O., 2002. The Future of Life. Little, Brown. 230 pp. Wood, N. A., 1975. Tuberculosis. In Kear, J. & N. Duplaix-Hall (eds), Flamingos. T. & A. D. Poyser, Berkhamsted, England: 205–207.

    Google Scholar 

  • Wood, R. B. & J. F. Talling, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Harper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, D.M., Childress, R.B., Harper, M.M. et al. Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia 500, 259–276 (2003). https://doi.org/10.1023/A:1024722821407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024722821407

Navigation