Skip to main content
Log in

Exploitation of a deep-water algal maximum by Daphnia: a stable-isotope tracer study

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The exploitation of a deep algal maximum by Daphnia in the absence of fish predation was studied in large indoor mesocosms. Facing the dilemma of low food but high temperature in the epilimnion vs. high food but low temperature in the hypolimnion, Daphnia distribute above and below the thermocline in order to optimise their fitness. Labelling hypolimnetic algae with 15N revealed that the vertical distribution of Daphnia is dynamic, i.e., all individuals traverse the thermocline and allocate a certain proportion of their time to feeding in the cold water. The overall energy gain from the deep-water algal maximum is lower than from the same algal concentration in the epilimnion due to the low temperature and the limited time an individual spends in the hypolimnion. The results provide mechanistic support for the hypothesis that Daphnia chose their habitat according to an Ideal Free Distribution with Costs model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, R., S. A. Wickham & N. B. Butler, 2001. Trophic interactions between zooplankton and the microbial community in contrasting food webs: the epilimnion and deep chlorophyll maximum of a mesotrophic lake. Aquat. Microb. Ecol. 24: 83–97.

    Google Scholar 

  • Barbiero, R. P. & M. L. Tuchman, 2001. Results from the U.S. EPA's biological open water surveillance program of the Laurentian Great Lakes: II. Deep chlorophyll maxima. J. Great Lakes Res. 27: 155–166.

    Google Scholar 

  • Christensen, D. L., S. R. Carpenter & K. L. Cottingham, 1995. Predicting chlorophyll vertical distribution in response to epilimnetic nutrient enrichment in small stratified lakes. J. Plankton Res. 17: 1461–1477.

    Google Scholar 

  • Fasham, M. J. R., T. Platt, B. Irwin & K. Jones, 1985. Factors affecting the spatial pattern of the deep chlorophyll maximum in the region of the Azores front. Prog. Oceanogr. 14: 129–165.

    Google Scholar 

  • Fee, E. J., 1976. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: Implications for primary production estimates. Limnol. Oceanogr. 21: 767–783.

    Google Scholar 

  • Fee, E. J., J. A. Shearer & S. DeClereq. 1977. In vivo chlorophyll profiles from lakes in the Experimental Lakes Area, northwestern Ontario. Environment Canada.

  • Lampert, W., 1987. Feeding and nutrition in Daphnia. Mem. Ist. ital. Idrobiol. 45: 143–192.

    Google Scholar 

  • Lampert, W., 1993. Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator avoidance hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79–88.

    Google Scholar 

  • Lampert, W. & C. J. Loose, 1992. Plankton towers: Bridging the gap between laboratory and field experiments. Arch. Hydrobiol. 126: 53–66.

    Google Scholar 

  • Lampert, W., E. McCauley & B. Manly, 2003. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? Proc. R. Soc. Lond. B 270: 765–773.

    Google Scholar 

  • Lampert, W. & B. E. Taylor, 1985. Zooplankton grazing in a eutrophic lake: implications of diel vertical migration. Ecology 66: 68–82.

    Google Scholar 

  • Moll, R. A. & E. F. Stoermer, 1982. A hypothesis relating trophic status and subsurface chlorophyll maxima of lakes. Arch. Hydrobiol. 94: 425–440.

    Google Scholar 

  • Padisak, J., R. Koschel, L. Krienitz & J. Nedoma, 1997. Deep layer autotrophic picoplankton maximum in the oligotrophic Stechlinsee. Eur. J. Phycol. 32: 403–416.

    Google Scholar 

  • Pearre, S. J., 1979. Problems of detection and interpretation of vertical migration. J. Plankton Res. 1: 29–44.

    Google Scholar 

  • Pilati, A. & W. A. Wurtsbaugh, 2003. Importance of zooplankton for the persistence of a deep chlorophyll layer: a limnocorral experiment. Limnol. Oceanogr. 48: 249–260.

    Google Scholar 

  • Richerson, P. J., M. Lopez & T. Coon, 1978. The deep chloropyll maximum layer of Lake Tahoe. Verh. int. Ver. Limnol. 20: 426–433.

    Google Scholar 

  • Sarnelle, O., 1999. Zooplankton effects on vertical particle flux: testable models and experimental results. Limnol. Oceanogr. 44: 357–370.

    Google Scholar 

  • Tyler, J. A. & J. F. Gilliam, 1995. Ideal free distributions of stream fish: a model and test with minnows, Rhinicthys atratulus. Ecology 76: 580–592.

    Google Scholar 

  • Williamson, C. E., R. W. Sanders, R. E. Moeller & P. L. Stutzman, 1996. Utilization of subsurface food resources for zooplankton reproduction: implications for diel vertical migration theory. Limnol. Oceanogr. 41: 224–233.

    Google Scholar 

  • Zehnder, A. A. & P. R. Gorham, 1960. Factors influencing the growth of Microcystis aeruginosa Kütz. emend. Elenk. Can. J. Microbiol. 6: 645–660.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampert, W., Grey, J. Exploitation of a deep-water algal maximum by Daphnia: a stable-isotope tracer study. Hydrobiologia 500, 95–101 (2003). https://doi.org/10.1023/A:1024644815548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024644815548

Navigation