Climatic Change

, Volume 59, Issue 1–2, pp 137–155 | Cite as

Tropical Glacier and Ice Core Evidence of Climate Change on Annual to Millennial Time Scales

  • Lonnie G. Thompson
  • Ellen Mosley-Thompson
  • M. E. Davis
  • P.-N. Lin
  • K. Henderson
  • T. A. Mashiotta


This paper examines the potential of the stable isotopic ratios, 18O/16O (δ 18Oice)and 2H/1H (δ Dice), preserved in mid to low latitude glaciers as a toolfor paleoclimate reconstruction. Ice cores are particularly valuable as they contain additional data, such as dust concentrations, aerosol chemistry, and accumulation rates, that can be combined with the isotopic information to assist with inferences about the regional climate conditions prevailing at the time of deposition. We use a collection of multi-proxy ice core histories to explore the δ 18O-climate relationship over the last 25,000 years that includes both Late Glacial Stage (LGS) and Holocene climate conditions. These results suggest that on centennial to millennial time scales atmospheric temperature is the principal control on the δ 18Oice of the snowfall that sustains these high mountainice fields.Decadally averaged δ 18Oice records from threeAndean and three Tibetan ice cores are composited to produce a low latitude δ 18Oice history for the last millennium. Comparison ofthis ice core composite with the Northern Hemisphere proxy record (1000–2000A.D.) reconstructed by Mann et al. (1999) and measured temperatures(1856–2000) reported by Jones et al. (1999) suggests the ice cores have captured the decadal scale variability in the global temperature trends. These ice cores show a 20th century isotopic enrichment that suggests a large scale warming is underway at low latitudes. The rate of this isotopically inferred warming is amplified at higher elevations over the Tibetan Plateau while amplification in the Andes is latitude dependent with enrichment (warming) increasing equatorward. In concert with this apparent warming, in situobservations reveal that tropical glaciers are currently disappearing. A brief overview of the loss of these tropical data archives over the last 30 years is presented along with evaluation of recent changes in mean δ18Oice composition. The isotopic composition of precipitation should be viewed not only as a powerful proxy indicator of climate change, but also as an additional parameter to aid our understanding of the linkages between changes in the hydrologic cycle and global climate.


Stable Isotopic Ratio Proxy Record Paleoclimate Reconstruction Regional Climate Condition Millennial Time Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, P. A., Rigsby, C. A., Seltzer, G. O., Fritz, S. C., Lowenstein, T. K., Bacher, N. P., and Veliz, C.: 2001, ‘Tropical Climate Changes at Millennial and Orbital Timescales on the Bolivian Altiplano’, Nature 409, 698–701.Google Scholar
  2. Beck, J. W., Récy, J., Taylor, F., Edwards, R. L., Cabioch, G.: 1997, ‘Abrupt Changes in Early Holocene Tropical Sea Surface Temperature Derived from Coral Records’, Nature 385, 705–707.Google Scholar
  3. Bradley, R. S.: 2000, ‘Past Global Changes and their Significance for the Future’, Quat. Sci. Rev. 19, 391–402.Google Scholar
  4. Brecher, H. and Thompson, L. G.: 1993, ‘Measurement of the Retreat of Qori Kalis in the Tropical Andes of Peru by Terrestrial Photogrammetry’, Photogrammetric Engineer. Remote Sens. 59, 1017–1022.Google Scholar
  5. Broecker, W. S.: 1995, ‘Cooling the Tropics’, Nature 376, 212–213.Google Scholar
  6. Broecker, W. S. and Denton, G. H.: 1990, ‘Implications of Global Snowline Lowering During Glacial Time to Glacial Theory’, Quat. Sci. Rev. 9, 305–341.Google Scholar
  7. Colinvaux, P. A., DeOliveira, P. E., Moreno, J. E., Miller, M. C., and Bush, M. B.: 1996, ‘A Long Pollen Record from Lowland Amozonia Forest and Cooling in Glacial Times’, Science 274, 85–88.Google Scholar
  8. Dansgaard, W. S.: 1964, ‘Stable Isotopes in Precipitation’, Tellus 16, 436–468.Google Scholar
  9. Dansgaard W. and Oeschger, H.: 1989, ‘Past Environmental Long-Term Records from the Arctic’, in Oeschger, H. and Langway, J. J. Jr. (eds.), The Environmental Record in Glaciers and Ice Sheets, Wiley, Chichester, pp. 287–318.Google Scholar
  10. Grootes, P. M., Stuiver, M., Thompson, L. G., and Mosley-Thompson, E.: 1989, ‘Oxygen Isotope Changes in Tropical Ice, Quelccaya, Peru’, J. Geophys. Res. 94, 1187–1194.Google Scholar
  11. Grootes, P.M., Stuiver, M., White, J.W. C., Johnsen, S., and Jouzel, J.: 1993, ‘Comparison of Oxygen Isotope Records from the GISP2 and GRIP Greenland Ice Cores’, Nature 366, 552–554.Google Scholar
  12. Guilderson, T. P., Fairbanks, R. G., and Rubenstein, J. L.: 1994, ‘Tropical Temperature Variations since 20,000 Years Ago: Modulating Interhemispheric Climate Change’, Science 263, 663–665.Google Scholar
  13. Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., Peterson, T., and Karl, T.: 2001, ‘A Closer Look at United States and Global Surface Temperature Change’,J. Geophys. Res. 106, 23947–23963.Google Scholar
  14. Hastenrath, S. and Greischar, L.: 1997, ‘Glacier Recession on Kilimanjaro, East Africa, 1912$#x2013;89’, J. Glaciol. 43, 455–459.Google Scholar
  15. Hastenrath, S. and Kruss, P. D.: 1992, ‘The Dramatic Retreat of Mount Kenya's Glaciers between 1963 and 1987’, Ann. Glaciol. 16, 127–133.Google Scholar
  16. Henderson, K. A., Thompson, L. G., and Lin, P.-N.: 1999, ‘Recording of El Niño in Ice Core ? 18O Records from Nevado Huascarán’, J. Geophys. Res. 104, 31053–31065.Google Scholar
  17. Herd, D. G. and Naeser, C.W.: 1974, ‘Mountain Snowline Lowering in the Tropical Andes’, Geology 2, 603–604.Google Scholar
  18. Jones, P. D., New, M., Parker, D. E., Martin, S., and Rigor, I. G.: 1999, ‘Surface Air Temperature and its Changes over the Past 150 Years’, Rev. Geophys. 37, 173–199.Google Scholar
  19. Johnsen, S. J., Dansgaard, W., Clausen, H. B., and Langway, C. C. Jr.: 1972, ‘Oxygen Isotope Profiles through the Antarctic and Greenland Ice Sheets’, Nature 235, 429–433.Google Scholar
  20. Jouzel, J., Lorius, C., Petit, J. R., Genthon, C., Barkov, N. I., Kotlyakov, V. M., and Petrov, V. M.: 1987, ‘Vostok Ice Core: A Continuous Isotope Temperature Record over the Last Climatic Cycle (160,000 years)’, Nature 329, 403–408.Google Scholar
  21. Kaser, G. and Noggler, B.: 1991, ‘Observations on Speke Glacier, Ruwenzori Range Uganda’,J. Glaciol. 37, 315–318.Google Scholar
  22. Klein, A. G., Isacks, B. L., and Bloom, A. L.: 1995, ‘Modern and Last Glacial Maximum Snowline in Peru and Bolivia: Implications for Regional Climatic Change’, Bulletin de l'Institut Français d'Études Andines 24, 607–617.Google Scholar
  23. Liu, X. and Chen, B.: 2000, ‘Climatic Warming in the Tibetan Plateau during Recent Decades’, Int. J. Clim. 20, 1729–1742.Google Scholar
  24. Mann, M. E, Bradley, R. S., and Hughes, M. K.: 1999, ‘Northern Hemisphere Temperatures during the Past Millennium: Inferences, Uncertainties, and Limitations’, Geophys. Res. Lett. 26, 759–562.Google Scholar
  25. Osmaston, H. A.: 1965, Snowline Lowering on the Mountains of Tropical Africa, Ph.D. Thesis, Oxford University, Worcester College.Google Scholar
  26. Pierrehumbert, R. T.: 1999, ‘Huascarán ? 18O as an Indicator of Tropical Climate during the Last Glacial Maximum’, Geophys. Res. Lett. 26, 1345–1348.Google Scholar
  27. Pierrehumbert, R. T.: 2000, ‘Climate Change and the Tropical Pacific: The Sleeping Dragon Wakes’, Proc. Nat. Acad. Sci. 97, 1355–1358.Google Scholar
  28. Porter, S. C.: 1979, ‘Glacial Snowline Lowering in Hawaii’, Geol. Soc. Am. Bull. 90, 980–1093.Google Scholar
  29. Rind, D.: 1998, ‘Latitudinal Temperature Gradients and Climate Change’, J. Geophys. Res. 103, 5943–5971.Google Scholar
  30. Rodbell, D. T.: 1992, ‘Snowline Lowering in the Peruvian Andes’, Boreas 21, 43–52.Google Scholar
  31. Schrag, D. P., Hampt, G., and Murray, D. W.: 1996, ‘Pore Fluid Constraints on the Temperature and Oxygen Isotopic Composition of the Glacial Ocean’, Science 272, 1930–1932.Google Scholar
  32. Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J. F., Schlosser, P., Broecker, W. S., and Bonani, G.: 1995, ‘Cooling of Tropical Brazil (5°C) during the Last Glacial Maximum’, Science 269, 379–383.Google Scholar
  33. Thompson, L. G.: 2000. ‘Ice Core Evidence for Climate Change in the Tropics: Implications for Our Future’,Quat. Sci. Rev. 19, 19–35.Google Scholar
  34. Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson, K. A. Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., and Cole-Dai, J. A.: 1998, ‘25,000 Year Tropical Climate History from Bolivian Ice Cores’, Science 282, 1858–1864.Google Scholar
  35. Thompson, L. G., Mosley-Thompson E., Bolzan, J. K., and Koci, B. R.: 1985, ‘A-1500 Year Record of Tropical Precipitation Recorded in Ice Cores from the Quelccaya Ice Cap, Peru’, Science 229, 971–973.Google Scholar
  36. Thompson, L. G. Mosley-Thompson, E., Dansgaard, W., and Grootes, P. M.: 1986, ‘The “Little Ice Age” as Recorded in the Stratigraphy of the Tropical Quelccaya Ice Cap’, Science 234, 361–364.Google Scholar
  37. Thompson, L. G., Mosley-Thompson, E., Davis M. E., Henderson, K. A., Brecher, H. H., Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., and Beer J.: 2002, ‘Kilimanjaro Ice Core Records: Evidence of Holocene Climate Change in Tropical Africa’, Science 298, 589–593.Google Scholar
  38. Thompson, L. G., Mosley-Thompson, E., Davis, M. E. Lin, P-N, Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K-b.: 1995, ‘Late Glacial Stage and Holocene Tropical Ice Core Records from Huascaran, Peru’, Science 269, 46–50.Google Scholar
  39. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Yao, T., Dyurgerov, M., and Dai, J.: 1993, ‘“Recent Warming”: Ice Core Evidence from Tropical Ice Cores with Emphasis upon Central Asia’, Global and Planetary Change 7, 145–156.Google Scholar
  40. Thompson, L. G., Mosley-Thompson, E., and Henderson, K. A.: 2000a, ‘Ice Core Paleoclimate Records in Tropical South America since the Last Glacial Maximum’, J. Quat. Sci. 15, 377–394.Google Scholar
  41. Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., Mosley-Thompson, E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., and Bolzan, J. F.: 1997, ‘Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core’, Science, 276, 1821–1825.Google Scholar
  42. Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., and Lin, P.-N.: 2000b, ‘A High-Resolution Millennial Record of the South Asian Monsoon from Himalayan Ice Cores’, Science 289, 1916–1919.Google Scholar
  43. Vuille, M. and Bradley, R. S.: 2000, ‘Mean Annual Temperature Trends and Their Vertical Structure in the Tropical Andes’, Geophys. Res. Lett. 27, 3885–3888.Google Scholar
  44. Vuille, M., Bradley, R. S., Healy, R., Werner, M., Hardy, D. R., Thompson, L. G., and Keimig F.:2002, ‘Modeling ? 18O in Precipitation over the Tropical Americas, Part II: Simulation of the Stable Isotope Signal in Andean Ice Cores’, J. Geophys. Res., in press.Google Scholar
  45. Yao, T., Thompson, L. G., Mosley-Thompson, E., Zhihong, Y., Xingping, Z., and Lin, P.-N.: 1996, ‘Climatological Significance of ?18O in North Tibetan Ice Cores’, J. Geophys. Res. 101, 29531–29537.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Lonnie G. Thompson
    • 1
  • Ellen Mosley-Thompson
    • 2
  • M. E. Davis
    • 3
  • P.-N. Lin
    • 4
  • K. Henderson
    • 3
  • T. A. Mashiotta
    • 4
  1. 1.Department of Geological Sciences and Byrd Polar Research Center, Ohio State University, ColumbusU.S.A.
  2. 2.Department of Geography and Byrd Polar Research Center, Ohio State University, ColumbusU.S.A
  3. 3.Department of Geological Sciences and Byrd Polar Research Center, Ohio State University, ColumbusU.S.A
  4. 4.U.S.A

Personalised recommendations