Climatic Change

, Volume 59, Issue 1–2, pp 177–232 | Cite as

Large-Scale Temperature Changes across the Southern Andes: 20th-Century Variations in the Context of the Past 400 Years

  • Ricardo Villalba
  • Antonio Lara
  • José A. Boninsegna
  • Mariano Masiokas
  • Silvia Delgado
  • Juan C. Aravena
  • Fidel A. Roig
  • Andrea Schmelter
  • Alexia Wolodarsky
  • Alberto Ripalta
Article

Abstract

Long-term trends of temperature variations across the southern Andes (37–55° S) are examined using a combination of instrumental and tree-ring records. A critical appraisal of surface air temperature from station records is presented for southern South America during the 20th century. For the interval 1930–1990, three major patterns in temperature trends are identified. Stations along the Pacific coast between 37 and 43° S are characterized by negative trends in mean annual temperature with a marked cooling period from 1950 to the mid-1970s. A clear warming trend is observed in the southern stations (south of 46°S), which intensifies at higher latitudes. No temperature trends are detected for the stations on the Atlantic coast north of 45° S. In contrast to higher latitudes in the Northern Hemisphere where annual changes in temperature are dominated by winter trends, both positive and negative trends in southern South America are due to mostly changes in summer (December to February) temperatures. Changes in the Pacific Decadal Oscillation (PDO) around 1976 are felt in summer temperatures at most stations in the Pacific domain, starting a period with increased temperature across the southern Andes and at higher latitudes.Tree-ring records from upper-treeline were used to reconstruct past temperature fluctuations for the two dominant patterns over the southern Andes. These reconstructions extend back to 1640 and are based on composite tree-ring chronologies that were processed to retain as much low-frequency variance as possible. The resulting reconstructions for the northern and southern sectors of the southern Andes explain 55% and 45% ofthe temperature variance over the interval 1930–1989, respectively. Cross-spectral analysis of actual and reconstructed temperatures over the common interval 1930–1989, indicates that most of the explained varianceis at periods >10 years in length. At periods >15 years, the squaredcoherency between actual and reconstructed temperatures ranges between 0.6 and 0.95 for both reconstructions. Consequently, these reconstructions are especially useful for studying multi-decennial temperature variations in the South American sector of the Southern Hemisphere over the past 360 years. As a result, it is possible to show that the temperatures during the 20thcentury have been anomalously warm across the southern Andes. The mean annual temperatures for the northern and southern sectors during the interval 1900–1990 are 0.53 °C and 0.86 °C above the1640–1899 means, respectively. These findings placed the current warming in a longer historical perspective, and add new support for the existence of unprecedented 20th century warming over much of the globe. The rate of temperature increase from 1850 to 1920 was the highest over the past 360 years, a common feature observed in several proxy records from higher latitudes in the Northern Hemisphere.Local temperature regimes are affected by changes in planetary circulation, with in turn are linked to global sea surface temperature (SST) anomalies. Therefore, we explored how temperature variations in the southern Andes since 1856 are related to large-scale SSTs on the South Pacific and South Atlantic Oceans. Spatial correlation patterns between the reconstructions and SSTs show that temperature variations in the northern sector of the southern Andes are strongly connected with SST anomalies in the tropical and subtropical Pacific. This spatial correlation pattern resembles the spatial signature of the PDO mode of SST variability over the South Pacific and is connected with the Pacific-South American (PSA) atmospheric pattern in the Southern Hemisphere. In contrast, temperature variations in the southern sector of the southern Andes are significantly correlated with SST anomalies over most of the South Atlantic, and in less degree, over the subtropical Pacific. This spatial correlation field regressed against SST resembles the `Global Warming' mode of SST variability, which in turn, is linked to the leading mode of circulation in the Southern Hemisphere. Certainly, part of the temperature signal present in the reconstructions can be expressed as a linear combination of four orthogonal modes of SST variability. Rotated empirical orthogonal function analysis, performed on SST across the South Pacific and South Atlantic Oceans, indicate that four discrete modes of SST variability explain a third, approximately, of total variance in temperature fluctuations across the southern Andes.

Keywords

Empirical Orthogonal Function Pacific Decadal Oscillation Southern Sector Reconstructed Temperature Empirical Orthogonal Function Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceituno, P., Fuenzalida, H., and Rosenblüth, B.: 1993, ‘Climate along the Extratropical Coast of South America’, in Mooney, H. A., Fuentes, E. R., and Kronberg, B. I. (eds.), Earth Systems Responses to Global Change: Contrast between North and South America, Academic Press, New York, U.S.A., pp. 61–69.Google Scholar
  2. Alexandersson, H.: 1986, ‘A Homogeneity Test Applied to Precipitation Data’, J. Climatol. 6, 661–675.Google Scholar
  3. Allan, R. J.: 2000, ‘ENSO and Climatic Variability in the Past 150 Years’, in Diaz, H. and Markgraf, V. (eds.), El Niño and the Southern Oscillation, Multiscale Variability and Global and Regional Impacts, Cambridge University Press, pp. 3–56.Google Scholar
  4. Almeyda, A. E. and Saez. S. F.: 1958, Recopilación de datos climáticos de Chile y mapas sinópticos respectivos, Ministerio de Agricultura, Santiago, Chile.Google Scholar
  5. Aravena, J. C., Lara, A., Wolodarsky, A., and Cuq, E.: 2000, ‘Dendroclimatology of Nothofagus pumilio Forests in the Upper Treeline of Magallanes Region, Chile’, International Conference on Dendrochronology for the Third Millenium, Abstracts Vol., Mendoza, Argentina, 216 pp.Google Scholar
  6. Beniston, M. (ed.): 1994, Mountain Environments in Changing Climates, Routledge Publishing Co., London and New York, 492 pp.Google Scholar
  7. Blasing, T. J., Solomon, A. M., and Duvick, D. N.: 1984, ‘Response Functions Revisited’, Tree-Ring Bull. 44, 1–15.Google Scholar
  8. Boninsegna, J. A., Keegan, J., Jacoby, G. C., D'Arrigo, R. D., and Holmes, R. L.: 1989, ‘Dendrochronological Studies in Tierra del Fuego, Argentina’, Quaternary of South America and Antarctic Peninsula 7, 315–326.Google Scholar
  9. Bradley, R. S.: 1999, ‘Paleoclimatology: Reconstructing Climates of the Quaternary’, Academic Press, San Diego, U.S.A., 610 pp.Google Scholar
  10. Bradley, R. S. and Jones, P. D.: 1993, ‘Little Ice Age Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends’, The Holocene 3, 367–376.Google Scholar
  11. Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Blade, I.: 1999, ‘The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field’, J. Climate 12, 1990–2009.Google Scholar
  12. Briffa, K. R.: 1995, ‘Interpreting High-Resolution Proxy Climate Data–The Example of Dendroclimatology’, in von Storch, H. and Navarra, A. (eds.), Analysis of Climate Variability, Applications of Statistical Techniques, Springer, Berlin, pp. 77–94.Google Scholar
  13. Briffa, K. R., Jones, P.D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlen, W., Zetterberg, P., and Eronen, M.: 1992, ‘Fennoscandian Summers from AD 500: Temperature Changes on Short and Long Time Scales’, Clim. Dyn. 7, 111–119.Google Scholar
  14. Briffa, K. R., Jones, P. D., Bartholin, T. S., Schweingruber, F. H., Karlen, W., and Shiyatov, S. G.: 1996, ‘Tree-Ring Variables as Proxy-Climate Indicators: Problems with Low-Frequency Signals’, in Jones, P. D., Bradley, R. S., Jouzel, J. (eds), Climate Variations and Forcing Mechanisms of the Last 2000 Years, NATO ASI Series, Vol. I41, Springer, Heidelberg, pp. 9–41.Google Scholar
  15. Casassa, G.: 1995, ‘Glacier Inventory in Chile: Current Status and Recent Glacier Variations’, Ann. Glaciol. 21, 317–322.Google Scholar
  16. Cook, E. R.: 1987, ‘The Decomposition of Tree Ring Series for Environmental Studies’, Tree-Ring Bull. 47, 37–59.Google Scholar
  17. Cook, E. R., Briffa, K., Shiyatov, S., and Mazepa, V.: 1990, ‘Tree-Ring Standardization and Growth-Trend Estimation’, in Cook, E. and Kairiukstis, L. (eds.), Methods of Dendrochronology, Kluwer Academic Publishers, Amsterdam, The Netherlands, pp. 104–132.Google Scholar
  18. Cook, E. R., Buckley, B. M., D'Arrigo, R. D., and Peterson, M. J.: 2000, ‘Warm-Season Temperatures since 1600 BC Reconstructed from Tasmanian Tree Rings and their Relationship to Large-Scale Sea Surface Temperature Anomalies’, Clim. Dyn. 16, 79–91.Google Scholar
  19. Cook, E. R. and Peters, K.: 1981, ‘The Smoothing Spline: A New Approach to Standardizing Forest Interior Ring-Width Series for Dendroclimatic Studies’, Tree-Ring Bull. 41, 45–53.Google Scholar
  20. Cooley, W. W. and Lohnes, P. R.: 1971, MultivariateData Analysis, Wiley, New York, U.S.A.Google Scholar
  21. De Fina, A. L.: 1972, ‘El clima de la región del los bosques andino-patagónicos argentinos’, in Dimitri,M. J. (ed.), La región de los bosques andino-patagónicos, Colección Científica del INTA, 10, 35–58.Google Scholar
  22. Diaz, H. F. and Kiladis, G. N.: 1992, ‘Atmospheric Teleconnections Associated with the Extreme Phases of the Southern Oscillation’, in Diaz, H. F. and Markgraf, V. (eds.), El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, Cambridge: Cambridge University Press, pp. 7–28.Google Scholar
  23. Doake, C. S. M. and Vaughan, D. G.: 1991, ‘Rapid Disintegration of theWordie Ice Shelf in Response to Atmospheric Warming’, Nature 350, 328–330.Google Scholar
  24. Draper, N. R. and Smith, H.: 1981, Applied Regression Analysis, 2nd edn., John Wiley and Sons, New York, U.S.A.Google Scholar
  25. Ebbesmeyer, C. C., Cayan, D. R., McLain, D. R., Nichols, F. H., Peterson, D. H., and Redmond, K. T.: 1991, ‘1976 Step in the Pacific Climate: Forty Environmental Changes between 1968–75 and 1977–84’, in Betancourt, J. L. and Tharp, V. L. (eds.), Proceedings of the 7th Annual Pacific Climate Workshop, California Department of Water Resources, Interagency Ecological Studies Program, Report 26, pp. 115–126.Google Scholar
  26. Enfield, D. B. and Mestas-Nuñez, A. M.: 1999, ‘Multiscale Variabilities in Global Sea Surface Temperature and their Relationships with Tropospheric Climate Patterns’, J. Climate 12, 2719–2733.Google Scholar
  27. Enfield, D. B. and Mestas-Nuñez, A. M.: 2000, GlobalModes of ENSO and Non-ENSO Sea Surface Temperature Variability and their Associations with Climate, in Diaz, H. and Markgraf, V. (eds.), El Niño and the Southern Oscillation, Multiscale Variability and Global and Regional Impacts, Cambridge University Press, pp. 89–112.Google Scholar
  28. Fritts, H. C.: 1976, Tree Rings and Climate, Academic Press, London.Google Scholar
  29. Gallopín, G. C.: 1978, ‘Estudio ecológico integrado de la cuenca superior del Río Manso Superior (Río Negro, Argentina). I. Descripción general de la cuenca’, Anales de Parques Nacionales 14, 161–230.Google Scholar
  30. Garreaud, R. and Battisti, D. S.: 1999, ‘Interannual and Interdecadal (ENSO-Like) Variability in the Southern Hemisphere Tropospheric Circulation’, J. Climate 12, 2113–2123.Google Scholar
  31. Geiger, R.: 1965, The Climate near the Ground, Harvard University Press, Cambridge, Massachusetts, U.S.A., 277 pp.Google Scholar
  32. Graham, N. E.: 1994, ‘Decadal-Scale Climate Variability in the 1970s and 1980s: Observations and Model Results’, Clim. Dyn. 10, 135–162.Google Scholar
  33. Guiot, J.: 1990: ‘Methods of Calibration’, in Cook, E. R. and Kairiukstis, L. A. (eds.), Methods of Dendrochronology. Applications in the Environmental Sciences, Kluwer Academic Publishers, Dordrecht, pp. 165–178.Google Scholar
  34. Gordon, G. A. and LeDuc, S. K.: 1981, ‘Verification Statistics for Regression Models’, in Am. Meteorol. Soc. (ed.), Preprints Seventh Conference on Probability and Statistics in Atmospheric Sciences, Monterey, California, U.S.A., pp. 129–133Google Scholar
  35. Hoffman, A. J.: 1990, ‘De las variaciones de la temperatura del aire en la Argentina y estaciones de la zona subantártica adyacente, desde 1903 hasta 1989 inclusive’, Primera Conferencia Latinoamericana sobre Geofísica, Geodesia e Investigación Espacial Antárcticas, Buenos Aires, pp. 160–168.Google Scholar
  36. Jacoby, G. C. and D'Arrigo, R. D.: 1989, ‘Reconstructed Northern Hemisphere Annual Temperature since 1671 Based on High-Latitude Tree-Ring Data from North America’, Clim. Change 14, 39–49.Google Scholar
  37. Jenkins, G. M. and Watts, D. G.: 1968, Spectral analysis and its applications, Holden-Day, San Francisco, U.S.A., 525 pp.Google Scholar
  38. Jobbágy, E. G., Paruelo, J. M., and León, R. J. C.: 1995, ‘EsEstimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia’, Ecología Austral 5, 47–54.Google Scholar
  39. Jones, P. D. and Briffa, K. R.: 1992, ‘Global Surface Air Temperature Variations during the Twentieth Century: Part 1, Spatial, Temporal and Seasonal Details’, The Holocene 2, 165–179.Google Scholar
  40. Kaplan, A., Cane, M. A., Kushnir, Y., Clement, A. C., Blumenthal, M. B., and Rajagopalan, B.: 1998, ‘Analyses of Global Sea Surface Temperature 1856–1991’, J. Geophys. Res. 103, 1856–18589.Google Scholar
  41. Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Gallo, K. P., Lindesay, J., Charlson, R. J., and Peterson, T. C.: 1993, ‘Asymmetric Trends of Daily Maximum and Minimum Temperature’, Bull. Amer. Meteorol. 74, 1007–1023.Google Scholar
  42. Karoly, D. J.: 1989, ‘Southern Hemisphere Circulation Features Associated with El Niño-Southern Oscillation’, J. Climate 2, 1239–1252.Google Scholar
  43. King, J. C.: 1994, ‘Recent Climate Variability in the Vicinity of the Antarctic Peninsula’, Int. J. Clim. 14, 357–369.Google Scholar
  44. Köner, C.: 1999, Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems, Springer, Berlin.Google Scholar
  45. Lara, A., Aravena, J. C., Villalba, R., Wolodarsky-Franke, A., Luckman, B. H., and Wilson, R.: 2001, Dendroclimatology of High-Elevation Nothofagus pumilio Forests at their Northern Distribution Limit in the Central Andes of Chile, Can. J. Forest Res. 31, 925–936.Google Scholar
  46. Lara, A. and Villalba, R.: 1993, ‘A 3620-Year Temperature Record from Fitzroya cupressoides Tree Rings in Southern South America’, Science 260: 1104–1106.Google Scholar
  47. Luckman, B. H. and Boninsegna, J. A.: 2001, ‘The Assessment of Present, Past and Future Climate Variability in the Americas from Treeline Environments’, PAGES News 9, 17–19.Google Scholar
  48. Luckman, B. H. and Villalba, R.: 2001, ‘Assessing the Synchroneity of Glacier Fluctuations in the Western Cordillera of the Americas during the Last Millennium’, in Markgraf, V. (ed.), Inter-Hemispheric Climate Linkages, Academic Press, San Diego, Califormia, U.S.A., pp. 119–140.Google Scholar
  49. Mantua, J. N., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: 1997, ‘A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production’, Bull. Amer. Meteorol. 78, 1069–1080.Google Scholar
  50. Masiokas, M. H., Villalba, R., Trombotto, D., Delgado, S., Luckman, B., Ripalta, A., and Hernandez, J.: 2001, ‘Dendrogeomorphological Reconstruction of Glacier Variations in Northern Patagonia during the Past 1000 Years’, in Kaennel Dobbertin, M.and Bräker, O. U. (eds.), International Conference on Tree Rings and People, Abstracts, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.Google Scholar
  51. Miller, A.: 1976, ‘The Climate of Chile’, in Schwerdtfeger, W. (ed.), World Survey of Climatology. Climates of Central and South America, Elsevier, Amsterdam, The Netherlands, pp. 113–131.Google Scholar
  52. Mitchell, J. M. Jr., Dzerdseevskii, B., Flohn, H., Hofmeyr, W. L., Lamb, H. H., Rao, K. N., and Wallen, C. C.: 1966, Climatic Change, World Meteorological Organization, Technical Note 79, pp. 79.Google Scholar
  53. Mo, K.: 2000, ‘Relationships between Low-Frequency Variability in the Southern Hemisphere and Sea Surface Temperature Anomalies’, J. Climate 13, 3599–3610.Google Scholar
  54. Naruse, R. and Aniya, M.: 1992, ‘Outline of Glacier Research Project in Patagonia’, Bull. Glacier Res. 10, 31–38.Google Scholar
  55. Osborn, T. J., Briffa, K. R., and Jones, P. D.: 1997, ‘Adjusting Variance for Sample-Size in Tree-Ring Chronologies and other Regional-Mean Time Series’, Dendrochronologia 15, 89–99.Google Scholar
  56. Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G.: 1997, ‘Arctic Environmental Change of the Last Four Centuries’, Science 278, 1251–1256.Google Scholar
  57. Percival, D. B. and Walden, A. T.: 1993, ‘Multitaper Spectral Estimation’, in Percival D. B. and Walden A. T. (eds.), Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University Press, Cambridge, pp. 331–337.Google Scholar
  58. Preisendorfer, R. W., Zwiers, F. W., and Barnett, T. P.: 1981, Foundations of Principal Components Selection Rules, SIO Ref. Ser. 81-14, Scripps Institution of Oceanography, La Jolla, California, U.S.A.Google Scholar
  59. Prohaska, F.: 1976, ‘The Climate of Argentina, Paraguay and Uruguay’, in Schwerdtfeger, W. (ed.), World Survey of Climatology, Climates of Central and South America, Elsevier, Amsterdam, The Netherlands, pp. 13–112.Google Scholar
  60. Priestley, M. B.: 1992, Spectral Analysis and Time Series, Academic Press, London.Google Scholar
  61. Quinn, W. H.: 1992, ‘A Study of Southen Oscillation-Related Climatic Activity for A.D. 622–1990 Incorporating Nile River Flow Data’, in Diaz, H. F. and Markgraf, V. (eds.), El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, Cambridge University Press, Cambridge, pp. 119–149.Google Scholar
  62. Richman, M. B.: 1986, ‘Rotation of Principal Components: A review’, J. Climatol. 6, 293–336.Google Scholar
  63. Roig, F. A., Aravena, J. C., and Lara, A.: 2000, ‘Tree-Ring Studies from Upper Treeline Environments of Tierra del Fuego and Navarino Island’, International Conference on Dendrochronology for the Third Millenium, Abstracts Vol., Mendoza, Argentina, 239 pp.Google Scholar
  64. Rosenblüth, B., Casassa, G., and Fuenzalida, H.: 1995, ‘Recent Climatic Changes in Western Patagonia’, Bull. Glacier Res. 13, 127–132.Google Scholar
  65. Rosenbluth, B., Fuenzalida, H. A., and Aceituno, P.: 1997, ‘Recent Temperature Variations in Southern South America’, Int. J. Clim. 17, 67–85.Google Scholar
  66. Taljaard, J. J.: 1972, ‘Synoptic Meteorology of the Southern Hemisphere’, Meteorological Monographs 13, 139–213.Google Scholar
  67. Thomson, D. J.: 1990, ‘Time Series Analysis of Holocene Climate Data’, Phil. Trans. Roy. Soc. London 330, 601–616.Google Scholar
  68. Tranquillini, W.: 1979, Physiological Ecology of the Alpine Timberline, Springer-Verlag, New York, U.S.A., 137 pp.Google Scholar
  69. Trenberth, K. E.: 1990, ‘Recent Observed Interdecadal Climate Changes in the Northern Hemisphere’, Bull. Amer. Meteorol. 71, 988–993.Google Scholar
  70. Trenberth, K. E. and Hurrell, J. W.: 1994, ‘Decadal Atmosphere-Ocean Variations in the Pacific’, Clim. Dyn. 9, 303–319.Google Scholar
  71. Schmelter, A.: 2000. Climatic Response and Growth-Trends of Nothofagus pumilio along Altitudinal Gradients from Arid to Humid Sites in Northern Patagonia, Ph.D. Dissertation, Universität Bonn, Bonn, Germany.Google Scholar
  72. Schwerdtfeger, W.: 1960, ‘The Seasonal Variation of the Strength of the Southern Circulation Vortex’, Mon. Wea Rev. 88, 203–208.Google Scholar
  73. Schwerdtfeger, W.: 1962, Meteorología del área del Pasaje de Drake', Servicio de Hidrografía Naval, Secretaría de Marina, Buenos Aires, 78 pp.Google Scholar
  74. Van Loon, H., Kidson, J.W., and Mullan, A. N.: 1993, ‘Decadal Variation of the Annual Cycle in the Australian Dataset’, J. Climate 6, 1227–1231.Google Scholar
  75. Vautard, R. and Ghil, M.: 1989, ‘Singular Spectrum Analysis in Nonlinear Dynamics, with Applications to Paleoclimatic Time Series’, Physica D 35, 395–424.Google Scholar
  76. Villalba, R.: 1990, ‘Climatic Fluctuations in Northern Patagonia in the Last 1000 Years as Inferred from Tree-Ring Records’, Quatern. Res. 34, 346–360.Google Scholar
  77. Villalba, R.: 1994, ‘Tree-Ring and Glacial Evidence for the Medieval Warm Epoch and the Little Ice Age in Southern South America’, Clim. Change 26, 183–197.Google Scholar
  78. Villalba, R.: 2000, ‘Dendroclimatology: A Southern Hemisphere Perspective’, in Smolka, P. and Volkheimer, W. (eds.), Paleo-and Neoclimates of the Southern Hemisphere: The State of the Arts, Springer, Germany, pp. 105–143.Google Scholar
  79. Villalba, R., Boninsegna, J. A., and Cobos. D. R.: 1989, ‘A Tree-Ring Reconstruction of Summer Temperature between AD 1500 and 1974 in Western Argentina’, Third International Conference on Southern Hemisphere Meteorology and Oceanography, Buenos Aires, Argentina, American Meteorological Society, pp. 196–197.Google Scholar
  80. Villalba, R., Boninsegna, J. A., Veblen, T. T., Schmelter, A., and Rubulis, S.: 1997, Recent Trends in Tree-Ring Records from High Elevation Sites in the Andes of Northern Patagonia, Clim. Change 36, 425–454.Google Scholar
  81. Villalba, R., D'Arrigo, R. D., Boninsegna, J. A., Lara, A., and Delgado, S.: ‘Decade-to Century-Scale Climatic Variability in the South American Sector of the Southern Oceans: Evidence from Tree-Ring Records during the Past Four Centuries’, J. Climate, submitted.Google Scholar
  82. Villalba, R., D'Arrigo, R. D., Cook, E. R., Wiles, G., and Jacoby, G. C.: 2001, ‘Decadal-Scale Climatic Variability along the Extratropical Western Coast of the Americas: Evidences from Tree-Ring Records’, in Markgraf, V. (ed.), Inter-Hemispheric Climate Linkages, Academic Press, San Diego, Califormia, U.S.A., pp. 155–172.Google Scholar
  83. Von Storch, H.: 1995, ‘Spatial Patterns: EOFs and CCA’, in von Storch, H. and Navarra, A. (eds.), Analysis of Climate Variability, Applications of Statistical Techniques, Springer, Berlin, pp. 259–279.Google Scholar
  84. Vose, R. S., Schmoyer, R. L., Steurer, P. M., Peterson T. C., Heim, R., Karl, T. R., and Eischeid, J. K.: 1992, The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data, ORNL/CDIAC-53, Environmental Science Division, Pub. No. 3912.Google Scholar
  85. WMO: 1998, ‘The Global Climate System Review, December 1993-May 1996’, Nicholls, J. M. (ed.), World Climate Data and Monitoring Programme, WMO No. 856, 95 pp.Google Scholar
  86. Wolodarsky-Franke, A., Lara, A., Aravena, J. C., and Cuq, E.: 2000, ‘Dendroclimatology of Nothofagus pumilio Treeline Forests in the Aysén Region, Chile (43°to 48° S)’, International Conference on Dendrochronology for the Third Millenium, Abstracts Vol., Mendoza, Argentina, 249 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ricardo Villalba
    • 1
  • Antonio Lara
    • 2
  • José A. Boninsegna
    • 1
  • Mariano Masiokas
    • 1
  • Silvia Delgado
    • 1
  • Juan C. Aravena
    • 3
  • Fidel A. Roig
    • 1
  • Andrea Schmelter
    • 4
  • Alexia Wolodarsky
    • 2
  • Alberto Ripalta
    • 1
  1. 1.Departamento de Dendrocronología e Historia AmbientalInstituto Argentino de Nivología, Glaciología Ciencias Ambientales (IANIGLA), C.C. 330Argentina
  2. 2.Instituto de SilviculturaUniversidad Austral de ChileValdiviaChile
  3. 3.Laboratorio de BotánicaUniversidad de ChileSantiagoChile
  4. 4.Geographisch Institut der Universität BonnBonnGermany

Personalised recommendations