Skip to main content
Log in

FO-spectra of chlorophyll fluorescence for the determination of zooplankton grazing

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the PHYTO-PAM phytoplankton analyzer the minimal fluorescence of dark-adapted samples (F0) was assessed, which gives direct information on the chlorophyll-a content. Clearance rates (CR) of Daphnia and Brachionus were calculated from a decrease in chlorophyll-a concentration using the PHYTO-PAM fluorometer for non-sacrificial sampling of chlorophyll-a. Clearance rates of Daphnia were measured and compared with those based on the cell-counts method using an electronic particle counter (Coulter counter). Chlorophyll fluorescence-based CR for Daphnia magna were very strongly correlated with Coulter-based CR, signifying the potential suitability of the PHYTO-PAM in grazing experiments. A procedure for determination of rotifer clearance rates was developed and the effects of rotifer density, duration of the grazing period, and food concentration on CR were investigated. Between 10 and 30 rotifers in 2.5 ml food suspension (i.e. 4–12 rotifers per ml) appeared optimal for calculating CR. The application of the deconvolution of F0-spectra in food selectivity experiments was evaluated using various mixtures of the green alga Scenedesmus obliquus and the cyanobacterium Microcystis aeruginosa fed to Brachionus. CR for Brachionus on M. aeruginosawere lower than on S. obliquusbut this was not caused by toxicity, because no mortality was observed. The higher CR on Scenedesmus than on Microcystis in the mixtures suggested selectivity. The importance of digital suppression of background fluorescence is highlighted in additional experiments with Daphnia feeding on mixtures of Microcystis and Scenedesmus, or on Microcystis alone. Without background correction of filtered samples, negative clearance rates were obtained for the `blue' Microcystis signal. Soluble fluorescing compounds of cyanobacterial origin, phycocyanin, were released from the Daphniaand contributed 40% to the overall-fluorescence. Deconvolution of F0-spectra for the determination of chlorophyll-a using the PHYTO-PAM appears to be a suitable tool for determination of rotifer CR even at very low food concentrations. A drawback of the method is that rather high rotifer densities are required. The required grazing period, however, is shorter than for cell-count methods, the method is sensitive, clearance rates can be measured at low food concentrations (< 0.1 mg C l−1) and information on selective feeding can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, H., N. Parker & J. Gregory, 1985. Chloroplast development and synthesis of chlorophyll and protochlorophyllide in Zostera transferred to darkness. Planta 165: 469-476.

    Google Scholar 

  • Bern, L., 1990. Size-related discrimination of nutritive and inert particles by freshwater zooplankton. J. Plankton Res. 12: 1059-1067.

    Google Scholar 

  • Beutler, M., B. Meyer, K. H. Wiltshire, C. Moldaenke & H. Dau, 1998. Rapid depth-profiling of the distribution of "spectral groups' of microalgae in lakes, rivers and in the sea. The method and a newly-developed submersible instrument which utilizes excitation of Chl fluorescence in five distinct wavelength ranges. In Garag, G. (ed.), Photosynthesis: Mechanisms and Effects, Vol. V. Kluwer Academic Publishers, Dordrecht, Boston, London: 4301-4304.

    Google Scholar 

  • Bogdan, K. G., J. J. Gilbert & P. L. Starkweather, 1980. In situ clearance rates of planktonic rotifers. Hydrobiologia 73: 73-77.

    Google Scholar 

  • Butterwick, C., S. I. Heany, & J. F. Talling, 1982. A comparison of eight methods for estimating the biomass and growth of planktonic algae. Br. Phycol. J. 17: 69-79.

    Google Scholar 

  • DeMott, W. R., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334-340.

    Google Scholar 

  • Desiderio, R. A., C. Moore, C. Lantz & T. J. Cowles, 1997. Multiple excitation fluorometer for in situ oceanographic applications. Applied Optics 36: 1289-1296.

    Google Scholar 

  • Dumont, H. J., 1977. Biotic factors in the population dynamics of rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 98-122.

    Google Scholar 

  • Erman, L. A., 1956. On the quantitative aspects of the feeding of rotifers (Rotifera phylum). Zool. Zh. 35: 965-971.

    Google Scholar 

  • Falkowski, P. G. & D. A. Kiefer, 1985. Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass. J. Plankton Res. 7: 715-731.

    Google Scholar 

  • Fulton III, R. S. & H. W. Paerl, 1987. Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. J. Plankton Res. 9: 837-855.

    Google Scholar 

  • Geel, C., 1997. Photosystem II electron flow as a measure for phytoplankton gross primary production. PhD-thesis Wageningen University. 110 pp.

  • Gilbert, J. J. & P. L. Starkweather 1978. Feeding in the rotifer Brachionus calyciflorus III. Direct observations on the effects of food type, food density, change in food type, and starvation on the incidence of pseudotrochal screening. Verh. int. Ver. Limnol. 20: 2382-2388.

    Google Scholar 

  • Gons, H. J., 1999. Optical teledetection of chlorophyll a in turbid inland waters. Environ. Sci. Technol. 33: 1127-1132.

    Google Scholar 

  • Guillard, R. R., 1975. Cultures of phytoplankton for feeding of marine invertebrates. In Smith, W. L & M. H. Chanley, (eds), Culture of Marine Invertebrate Animals. New York, Plenum: 29-60.

    Google Scholar 

  • Gulati, R. D., 1985. Zooplankton grazing methods using radioactive tracers: technical problems. Hydrobiol. Bull. 19: 61-69.

    Google Scholar 

  • Gulati, R. D., 1990. Zooplankton structure in the Loosdrecht lakes in relation to trophic status and recent restoration measures. Hydrobiologia 191: 173-188.

    Google Scholar 

  • Gulati, R. D., A. L. Ooms-Wilms, O. F. R. Van Tongeren, G. Postema & K. Siewertsen, 1992. The dynamics and role of limnetic zooplankton in Loosdrecht lakes (The Netherlands). Hydrobiologia 233: 69-86.

    Google Scholar 

  • Gulati, R. D., J. Ejsmont-Karabin & G. Postema, 1993. Feeding in Euchlanis dilata lucksiana Hauer on filamentous cyanobacteria and a prochlorophyte. Hydrobiologia 255/256: 269-274.

    Google Scholar 

  • Halbach, U. & G. Halbach-Keup, 1974. Quantitive Beziehungen zwischen Phytoplankton und der Populationsdynamik des Rotators Brachionus calyciflorus. Befunde aus Laboratoriumexperimenten und Freilanduntersuchungen. Arch. Hydrobiol. 73: 273-309.

    Google Scholar 

  • Haney, J. F., M. Brauer & G. Nürnberg, 1986. Feeding and egestion rates of individual zooplankton using Cerenkov counting. Hydrobiologia 141: 165-174.

    Google Scholar 

  • Hansen, B., T. Wernberg-Møller & L. Wittrup, 1997. Particle grazing efficiency and specific growth efficiency of the rotifer Brachionus plicatilis (Muller). J. exp. mar. Biol. Ecol. 215: 217-233.

    Google Scholar 

  • Heany, S. I., 1978. Some observations on the use of the in vivo fluorescence technique to determine chlorophyll a in natural populations and cultures of freshwater phytoplankton. Freshwat. Biol. 8: 115-126.

    Google Scholar 

  • Heinze, I., H. Dau & H. Senger, 1996. The relation between the photochemical yield and variable fluorescence of Photosystem II in the green alga Scenedesmus obliquus. J. Photochem. Photobiol. B: Biol. 32: 89-95.

    Google Scholar 

  • Karsten, U., I. Klimant & G. Holst, 1996. A new in vivo fluorimetric technique to measure growth of adhering phototrophic microorganisms. Appl. Environ. Microbiol. 62: 237-243.

    Google Scholar 

  • Kolbowski, J. & U. Schreiber, 1995. Computer-controlled phytoplankton analyzer based on a 4-wavelength PAM Chl fluorometer. In Mathis, P. (ed.), Photosynthesis: From Light to Biosphere, Vol. V. Kluwer Academic Publishers, Dordrecht, Boston, London: 825-828.

    Google Scholar 

  • Lehman, J. T., 1976. The filter-feeder as an optimal forager, and the predicted shapes of feeding curves. Limnol. Oceanogr. 21: 501-516.

    Google Scholar 

  • Murphy, A. M. & T. J. Cowles, 1997. Effects of darkness on multiexcitation in vivo fluorescence and survival in a marine diatom. Limnol. Oceanogr. 42: 1444-1453.

    Google Scholar 

  • Navarro, N., 1999. Feeding behaviour of the rotifers Brachionus plicatilis and Brachionus rotundiformis with two types of food: live and freeze-dried microalgae. J. exp. mar. Biol. Ecol. 237: 75-87.

    Google Scholar 

  • Nizan, S., C. Dimentman & M. Shilo, 1986. Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna. Limnol. Oceanogr. 31: 497-502.

    Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD), 1982. Eutrophication of Waters: Monitoring, Assessment and Control. OECD, Paris, 1982. 154 pp.

    Google Scholar 

  • Ooms-Wilms, A. L., G. Postema & R. D. Gulati, 1993. Clearance rates of bacteria by the rotifer Filinia longiseta (Ehrb.) measured using three tracers. Hydrobiologia 255/256: 255-260.

    Google Scholar 

  • Ooms-Wilms, A. L., G. Postema & R. D. Gulati, 1995. Evaluation of bactivory of Rotifera based on measurements of in situ ingestion of fluorescent particles, including some comparisons with Cladocera. J. Plankton Res. 17: 1057-1077.

    Google Scholar 

  • Ooms-Wilms, A. L., G. Postema & R. D. Gulati, 1999. Population dynamics of planktonic rotifers in Lake Loosdrecht, the Netherlands, in relation to their potential food and predators. Freshwat. Biol. 42: 77-97.

    Google Scholar 

  • Peters, R. H., 1984. Methods for the study of feeding, grazing and assimilation by zooplankton. In Downing, J. A. & F. H. Rigler (eds), A Manual for the Assessment of Secondary Production in Fresh Waters. IBP Handbook 17, 2nd edn. Blackwell, Oxford: 336-412.

    Google Scholar 

  • Pilarska, J., 1977. Eco-physiological studies on Brachionus rubens Ehrbg. (Rotatoria) I. Food selectivity and feeding rate. Pol. Arch. Hydrobiol. 24: 319-328.

    Google Scholar 

  • Pourriot, R., 1977. Food and feeding habitats of Rotifera. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 243-260.

    Google Scholar 

  • Rothhaupt, K. O., 1990a. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnol. Oceanogr. 35: 16-23.

    Google Scholar 

  • Rothhaupt, K. O., 1990b. Changes of the functional resposnes of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnol. Oceanogr. 35: 24-32.

    Google Scholar 

  • Rothhaupt, K. O., 1995. Algal nutrient limitation affects rotifer growth rate but not ingestion rate. Limnol. Oceanogr. 40: 1201-1208.

    Google Scholar 

  • Rothhaupt, K. O. & W. Lampert, 1992. Growth-rate dependent feeding rates in Daphnia pulicaria and Brachionus rubens: adaptation to intermediate time-scale variations in food abundance. J. Plankton Res. 14: 737-751.

    Google Scholar 

  • Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177-183.

    Google Scholar 

  • Schlüter, M., C. J. Soeder, & J. Groeneweg, 1987. Growth and food conversion of Brachionus rubens in continuous culture. J. Plankton Res. 9: 761-783.

    Google Scholar 

  • Schreiber, U., C. Neubauer & U. Schliwa, 1993. PAM fluorometer based on medium frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research. Photosynth. Res. 36: 65-72.

    Google Scholar 

  • Schreiber, U., 1998. Chlorophyll fluorescence: new instruments for special applications. In Garag, G. (ed.), Photosynthesis: Mechanisms and Effects, Vol. V. Kluwer Academic Publishers, Dordrecht, Boston, London: 4253-4258.

    Google Scholar 

  • Speziale, B. J., S. P. Schreiner, P. A. Giamatteo & J. E. Schindler, 1984. Comparison of N,N-dimethylformamide, dimethyl sulfoxide, and acetone for extraction of phytoplankton chlorophyll. Can. J. Fish. aquat. Sci. 41: 1519-1522.

    Google Scholar 

  • Starkweather, P. L. & K. G. Bogdan, 1980. Detrimental feeding in natural zooplankton communities: discrimination between live and dead algal foods. Hydrobiologia 73: 83-85.

    Google Scholar 

  • Starkweather, P. L. & J. J. Gilbert, 1977. Feeding in the rotifer Brachionus calyciflorus II. Effect of food density on feeding rates using Euglena gracilis and Rhodotorula glutinis. Oecologia 28: 133-139.

    Google Scholar 

  • Starkweather, P. L. & P. E. Kellar, 1987. Combined influences of particulate and dissolved factors in the toxicity of Microcystis aeruginosa (NRC-SS-17) to the rotifer Brachionus calyciflorus. Hydrobiologia 147: 375-378.

    Google Scholar 

  • Tollrian, R., 1993. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15: 1309-1318.

    Google Scholar 

  • Van Kooten, O. & J. F. H. Snel, 1990. Editorial note: the use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Res. 25: 147-150.

    Google Scholar 

  • Van der Grinten, E., M. Lürling & T. Burger-Wiersma, 2000. Is Microcystis really toxic to Daphnia? Verh. int. Ver. Limnol. 27: 3226-3229.

    Google Scholar 

  • Walz, N., 1995. Rotifer populations in plankton communities: energetics and life history strategies. Experientia 51: 437-354.

    Google Scholar 

  • Walz, N. & T. Gschloessl, 1988. Functional response of ingestion and filtration rate of the rotifer Brachionus angularis to the food concentration. Verh. int. Ver. Limnol. 23: 1993-2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lürling, M., Verschoor, A.M. FO-spectra of chlorophyll fluorescence for the determination of zooplankton grazing. Hydrobiologia 491, 145–157 (2003). https://doi.org/10.1023/A:1024436508387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024436508387

Navigation