Advertisement

Climatic Change

, Volume 59, Issue 1–2, pp 101–121 | Cite as

The Impact that Elevation Has on the ENSO Signal in Precipitation Records from the Gulf of Alaska Region

  • G. W. K. Moore
  • Keith Alverson
  • Gerald Holdsworth
Article

Abstract

In this paper we attempt to reconcile seemingly contradictory research concerning the existence of an El-Niño Southern Oscillation (ENSO) signal in precipitation records from the Gulf of Alaska region. A number of studies based on records from primarily coastal stations and the mass balance of low elevation glaciers suggest there is at best a weak relationship between ENSO and precipitation anomalies in the region. In contrast, an analysis of an ice core extracted from a high elevation site on Mount Logan in the region indicates that a statistically significant ENSO signal exists in its annual snow accumulation time series on both inter-annual and inter-decadal time scales. The ENSO signal in the region is expressed through an atmospheric teleconnection known as the Pacific North America pattern. We show that a statistically significant enhancement in the atmospheric moisture transport into the North Pacific and western North America is associated with the warm phase of ENSO. The maximum transport does not occur at the surface but rather in the lower to middle troposphere. We argue that the high elevation of the Mount Logan site allows it to preferentially sample the vertically distributed moisture transport anomaly associated with warm ENSO events. This study serves to highlight the wealth of information on teleconnection patterns that may be contained in paleoclimate data from mountainous regions.

Keywords

Moisture Transport ENSO Event Teleconnection Pattern Middle Troposphere High Elevation Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bitz, C. M. and Battisti, D. S.: 1999, ‘Interannual to Decadal Variability in Climate and the Glacier Mass Balance in Washington, Western Canada, and Alaska’, J. Climate 12, 3181–3196.Google Scholar
  2. Branstator, G.: 1985, ‘Analysis of General-Circulation Model Sea-Surface Temperature Anomaly Simulations Using a Linear-Model. 1. Forced Solutions’, J. Atmos. Sci. 42, 2225–2241.Google Scholar
  3. Cohen, J. L., Salstein, D. A., and Rosen, R. D.: 2000, ‘Interannual Variability in the Meridional Transport of Water Vapor’, J. Hydrometeorology 1, 547–553.Google Scholar
  4. Dai, A. G. and Wigley, T. M. L.: 2000, ‘Global Patterns of ENSO-Induced Precipitation’, Geophys. Res. Lett. 27, 1283–1286.Google Scholar
  5. DeWeaver, E. and Nigam, S.: 1995, ‘Influence of Mountain-Ranges on the Midlatitude Atmospheric Response to El-Nino Events’, Nature 378, 706–708.Google Scholar
  6. Gershunov, A. and Barnett, T. P.: 1998, ‘Interdecadal Modulation of ENSO Teleconnections’, Bull. Amer. Meteorol. Soc. 79, 2715–2725.Google Scholar
  7. Gesch, D. B., Verdin, K. L., and Greenlee, S. K.: 1999, ‘New Land Surface Digital Elevation Model Covers the Earth’, Eos, Trans. Amer. Geophys. Union 80, 69–70.Google Scholar
  8. Gill, A. E.: 1982, Atmosphere-Ocean Dynamics, Academic Press, 622 pp.Google Scholar
  9. Held, I. M., 1983, ‘Stationary and Quasi-Stationary Eddies in the Extra-Tropical Atmosphere’, in Hoskins, B. J. and Pearce, R. P. (eds.), Large-Scale Dynmaical Processes in the Atmosphere, Academic Press, pp. 127–168.Google Scholar
  10. Hodge, S. M., Trabant, D. C., Krimmel, R. M., Heinrichs, T. A., March, R. S., and Josberger, E. G.: 1998, ‘Climate Variations and Changes in Mass of Three Glaciers in Western North America’, J. Climate 11, 2161–2179.Google Scholar
  11. Holdsworth, G., Fogarasi, S., and Krouse, H. R.: 1991, ‘Variation of the Stable Isotopes of Water with Altitude in the Saint Elias Mountains of Canada’, J. Geophys. Research-Atmospheres 96, 7483–7494.Google Scholar
  12. Holdsworth, G., Krouse, H. R., and Nosal, M.: 1992, ‘Ice Core Climate Signals from Mount Logan Yukon 1700–1987’, in Bradley, R. S. and Jones, P. D. (eds.), Climate since A.D. 1500, Routledge, pp. 483–504.Google Scholar
  13. Horel, J. D. and Wallace, J. M.: 1981, ‘Planetary Scale Atmospheric Phenomena Associated with the Southern Oscillation’, Mon. Wea. Rev. 109, 813–829.Google Scholar
  14. Hoskins, B. J. and Karoly, D. J.: 1981, ‘The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing’, J. Atmos. Sci. 38, 1179–1196.Google Scholar
  15. Hsu, H. H. and Wallace, J. M.: 1985, ‘Vertical Structure of Wintertime Teleconnection Patterns’, J. Atmos. Sci. 42, 1693–1710.Google Scholar
  16. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: 1996, ‘The NCEP/NCAR 40-Year Reanalysis Project’, Bull. Amer. Meteorol. Soc. 77, 437–471.Google Scholar
  17. Kaplan, A., Cane, M. A., Kushnir, Y., Clement, A. C., Blumenthal, M. B., and Rajagopalan, B.: 1998, ‘Analyses of Global Sea Surface Temperature 1856–1991’, J. Geophys. Research-Oceans 103, 18567–18589.Google Scholar
  18. Kennedy, B. W.: 1995, ‘Air Temperature and Precipitation Data, Wolverine Glacier Basin, Alaska, 1967–94’, U.S. Geological Survey.Google Scholar
  19. Kiladis, G. N. and Diaz, H. F.: 1989, ‘Global Climate Anomalies Associated with Extremes in the Southern Oscillation’, J. Climate 2, 1069–1090.Google Scholar
  20. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: 2001, ‘The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation’, Bull. Amer. Meteorol. Soc. 82, 247–267.Google Scholar
  21. Mann, M. E. and Lees, J. M.: 1996, ‘Robust Estimation of Background Noise and Signal Detection in Climatic Time Series’, Clim. Change 33, 409–445.Google Scholar
  22. Mo, K. C. and Higgins, R. W.: 1996, ‘Large-Scale Atmospheric Moisture Transport as Evaluated in the NCEP/NCAR and the NASA/DAO Reanalyses’, J. Climate 9 1531–1545.Google Scholar
  23. Mo, K. C. and Livezey, R. E.: 1986, ‘Tropical Extratropical Geopotential Height Teleconnections during the Northern-Hemisphere Winter’, Mon. Wea. Rev. 114, 2488–2515.Google Scholar
  24. Moore, G. W. K., Alverson, K., and Holdsworth, G.: 2002, ‘Variability in the Climate of the Pacific Ocean and North America as Expressed in an Ice Core from Mount Logan’, Ann. Glaciol., in press.Google Scholar
  25. Moore, G. W. K., Holdsworth, G., and Alverson, K.: 2001, ‘Extra-Tropical Response to ENSO as Expressed in an Ice Core from the Saint Elias Mountain Range’, Geophys. Res. Lett. 28, 3457–3460.Google Scholar
  26. Peixoto, J. P. and Oort, A. H.: 1992, Physics of Climate, American Institute of Physics, 520 pp.Google Scholar
  27. Ropelewski, C. F. and Halpert, M. S.: 1986, ‘North-American Precipitation and Temperature Patterns Associated with the Elnino Southern Oscillation (Enso)’, Mon. Wea. Rev. 114, 2352–2362.Google Scholar
  28. Santer, B. D., Hnilo, J. J., Wigley, T.M. L., Boyle, J. S., Doutriaux, C., Fiorino, M., Parker, D. E., and Taylor, K. E.: 1999, ‘Uncertainties in Observationally Based Estimates of Temperature Change in the Free Atmosphere’, J. Geophys. Research-Atmospheres 104, 6305–6333.Google Scholar
  29. Shabbar, A., Bonsal, B., and Khandekar, M.: 1997, ‘Canadian Precipitation Patterns Associated with the Southern Oscillation’, J. Climate 10, 3016–3027.Google Scholar
  30. Smirnov, V. V.: 2001, ‘Short-Term and Seasonal Variability of the Atmospheric Water Vapor Transport through the Mackenzie River Basin’, J. Hydrometeorology 2, 441–452.Google Scholar
  31. Smirnov, V. V. and Moore, G. W. K.: 1999, ‘Spatial and Temporal Structure of Atmospheric Water Vapor Transport in the Mackenzie River Basin’, J. Climate 12, 681–696.Google Scholar
  32. Trenberth, K. E., 1995, ‘Atmospheric Circulation Climate Changes’, Clim. Change 31, 427–453.Google Scholar
  33. Trenberth, K. E., Brantstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., and Ropelewski, C.: 1998, ‘Progress during TOGA in Understanding andModeling Global Teleconnections Associated with Tropical Sea Surface Temperatures’, J. Geophys. Res. 103, 14291–14324.Google Scholar
  34. Trenberth, K. E., Stepaniak, D. P., Hurrell, J. W., and Fiorino, M.: 2001, ‘Quality of Reanalyses in the Tropics’, J. Climate 14, 1499–1510.Google Scholar
  35. Vose, R. S., Schmoyer, R. L., Steurer, P. M., Peterson, T. C., Heim, R., Karl, T. R., and Eischeid, J. K.: 1992, ‘The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data’, Oak Ridge, Tennessee, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.Google Scholar
  36. Walker, G. T.: 1924, ‘Correlations in Seasonal Variations of Weather IX’, Mem. Ind. Meteorol. Dept. 24, 275–332.Google Scholar
  37. Wallace, J. M. and Gutzler, D. S.: 1981, ‘Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter’, Mon. Wea. Rev. 109, 784–812.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • G. W. K. Moore
    • 1
  • Keith Alverson
    • 2
  • Gerald Holdsworth
    • 3
  1. 1.Department of PhysicsUniversity of Toronto, Toronto, OntarioCanada
  2. 2.Switzerland
  3. 3.University of Calgary, Calgary, AlbertaCanada

Personalised recommendations