Skip to main content
Log in

Phototrophic activity and redox condition in Lake Hamana, Japan, indicated by sedimentary photosynthetic pigments and molybdenum over the last ∼250 years

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We analyzed photosynthetic pigments, total organic carbon (TOC), biogenic silica, and Mo, a redox-sensitive element, in 210Pb-dated sediment cores to reconstruct the historical changes in primary productivity and anoxia in the central basin of Lake Hamana, a brackish lake in Shizuoka Prefecture, Japan, over the last ∼250 years. The algal photosynthetic pigments we analyzed included chlorophyll a (and its derivatives), chlorophyll b (and its derivatives), and carotenoids such as β-carotene, lutein, zeaxanthin, diatoxanthin, fucoxanthin, alloxanthin, and α-carotene. Marker pigments for phototrophic sulfur bacteria were also recorded, including okenone and bacteriopheophytin a, originating from Chromatium (a genus of purple sulfur bacteria), and isorenieratene and bacteriochlorophylls e 1, e 2 and e 3 (and corresponding bacteriopheophytins) from brown Chlorobium (a brown-colored group of green sulfur bacteria). The occurrence of these pigments throughout the length of all cores indicates that the anoxia in Lake Hamana has existed over at least the last ∼250 years. The indicators related to primary productivity – TOC and pigments of aerobic and anaerobic phototrophs – and an indicator of anoxia, Mo, increased after ∼1860, indicating that productivity had increased in both the oxic and anoxic (sulfidic) zones. The depth profiles of the indicators in the sediment cores showed that among phototrophic sulfur bacteria, Chromatium preferentially increased relative to brown Chlorobium when the lake productivity was high, and hence high anoxia existed in the lake. This can be explained by a shallowing of the oxic/anoxic boundary zone due to changes in temporal and/or spatial extents of seasonal anoxia, which made the light intensity in the upper anoxic zone high enough for Chromatium to grow. The upper Chromatium layer may absorb the wavelengths of light that favor the growth of brown Chlorobium in the water column, resulting in a relative decrease in brown Chlorobium. During the 1950s, the trends among the indicators changed significantly. This change is attributed to the construction of training walls, built to direct tidal currents into the lake, on the Imagire-guchi Channel, the sole inlet of seawater to the lake, during 1954–1956, and the resultant increases of seawater intrusion and lake salinity. A decrease in okenone and bacteriopheophytin a, or in okenone/isorenieratene ratio, after ∼1960 accompanying a decrease in Mo, is attributed to a deepening of the anoxic zone, where the light intensity became too low for growth of Chromatium, more light-demanding than the brown Chlorobium. A decrease of zeaxanthin (cyanobacteria) after ∼1960 relative to lutein (green algae) and diatoxanthin (diatoms and dinoflagellates) indicated a change in algal assemblage, presumably due to the increased salinity. Principal component analysis with a data set of total algal carotenoids, okenone, isorenieratene, and Mo also suggested that a major change occurred around the 1950s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson J.M., Helz G.R. and Miller C.V. 2001. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochim. Cosmochim. Acta 65: 237-252.

    Google Scholar 

  • Appleby P.G. and Oldfield F. 1992. Application of lead-210 to sedimentation studies. In: Ivanovich M. and Harmon R. (eds), Uranium-Series Disequilibrium: Application to Earth, Marine and Environmental Sciences. 2nd edn. Clarendon Press, Oxford, pp. 731-778.

    Google Scholar 

  • Aizaki M. 1992. Kosyo-sui-Kasumigaura wo Rei nisite-[Lake water]. In: Kai N.K. (ed.), Rikusui no Kagaku [Chemistry of Terrestrial Water]. Gakkai Shuppan Center, Tokyo (in Japanese with English abstract)., pp. 103-112.

    Google Scholar 

  • Bennion H., Appleby P.G. and Phillips G.L. 2001. Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. J. Paleolim. 26: 181-204.

    Google Scholar 

  • Bianchi T.S., Engelhaupt E., Westman P., Andren T., Rolff C. and Elmgren R. 2000. Cyanoacterial blooms in the Baltic Sea: Natural or human-induced? Limnol. Oceanogr. 45: 716-726.

    Google Scholar 

  • Biebl H. and Pfennig N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9-16.

    Google Scholar 

  • Borrego C.M. and Garcia-Gil L.J. 1994. Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynth. Res. 41: 157-163.

    Google Scholar 

  • Britton G. 1995. UV/Vis spectroscopy. In: Britton G., Lianen Jensen S. and Pfander H. (eds), Carotenoids, Vol. 1b: Spectroscopy. Birkhäuser Verlag, Basel, pp. 13-62.

    Google Scholar 

  • Brown S.R., McIntosh H.J. and Smol J.P. 1984. Recent paleolimnology of a meromictic lake: Fossil pigments of photosynthetic bacteria. Verh. int. Ver. Limnol. 22: 1357-1360.

    Google Scholar 

  • Chen N., Bianchi T.S., McKee B.A. and Bland J.M. 2001. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Org. Geochem. 32: 543-561.

    Google Scholar 

  • Colodner D., Edmond J. and Boyle E. 1995. Rhenium in the Black Sea: comparison with molybdenum and uranium. Earth Planet. Sci. Lett. 131: 1-15.

    Google Scholar 

  • Cooper S.R. and Brush G.S. 1993. A 2,500-year history of anoxia and eutrophication in Chesapeake Bay. Estuaries 16: 617-626.

    Google Scholar 

  • Crusius J., Calvert S., Pedersen T. and Sage D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 145: 65-78.

    Google Scholar 

  • Dean W.E., Gardner J.V. and Piper D.Z. 1997. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochim. Cosmochim. Acta 61: 4507-4518.

    Google Scholar 

  • Erickson B.E. and Helz G.R. 2000. Molybdenum (VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim. Cosmochim. Acta 64: 1149-1158.

    Google Scholar 

  • Feuillade M., Dominik J., Druart J.-C. and Loizeau J.-L. 1995. Trophic status evolution of Lake Nantua as revealed by biological records in sediment. Arch. Hydrobiol. 132: 337-362.

    Google Scholar 

  • Francis D.R. 2001. A record of hypolimnetic oxygen conditions in a temperate multi-depression lake from chemical evidence and chironomid remains. J. Paleolim. 25: 351-365.

    Google Scholar 

  • Guilizzoni P., Bonomi G., Galanti G. and Ruggiu D. 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103: 103-106.

    Google Scholar 

  • Guilizzoni P., Lami A. and Marchetto A. 1992. Plant pigment ratios from lake sediments as indicators of recent acidication in alpine lakes. Limnol. Oceanogr. 37: 1565-1569.

    Google Scholar 

  • Guilizzoni P., Marchetto A., Lami A., Cameron N.G., Appleby P.G., Rose N.L. et al. 1996. The environmental history of a mountain lake (Lago Paione Superiore, Central Alps, Italy) for the last c. 100 years: a multidisciplinary, palaeolimnological study. J. Paleolimnol. 15: 245-264.

    Google Scholar 

  • Hall G.E.M. 1997. Determination of trace elements in sediments. In: Mudroch A., Azcue J.M. and Mudroch P. (eds), Manual of Physico-Chemical Analysis of Aquatic Sediments. CRC Press, Boca Raton, pp. 85-145.

    Google Scholar 

  • Hall R.I., Leavitt P.R., Quinlan R., Dixit A.S. and Smol J.P. 1999. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 44: 739-756.

    Google Scholar 

  • Hamanako Branch of Shizuoka Prefectual Fisheries Experiment Station 1980. Tables of Water Quality in Lake Hamana, May 1951-March 1980.Report from Hamanako Branch of Shizuoka Prefectual Fisheries Experiment Station No. 211, 340 pp.

  • Helz G.R., Miller C.V., Charnock J.M., Mosselmans J.F.W., Pattrick R.A.D., Garner C.D. et al. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60: 3631-3642.

    Google Scholar 

  • Hodgson D.A., Wright S.W., Tyler P.A. and Davies N. 1998. Analysis of fossil pigments from algae and bacteria in meromictic Lake Fidler, Tasmania, and its application to lake management. J. Paleolimnol. 19: 1-22.

    Google Scholar 

  • Ikeya N., Wada H., Akutsu H. and Takahashi M. 1990. Origin and sedimentary history of Hamana-ko Bay, Pacific coast of central Japan. Chishitsugaku Ronsyu [Memoir. Geol. Soc. Japan] 36 (in Japanese with English abstract): 129-150.

    Google Scholar 

  • Jeffrey S.W. and Vesk M. 1997. Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey S.W., Mantoura R.F.C. and Wright S.W. (eds), Phytoplankton Pigments in Oceanography. UNESCO, Paris, pp. 37-84.

    Google Scholar 

  • Jeffrey S.W., Mantoura R.F.C. and Bjørnland T. 1997. Data for the identification of 47 key phytoplankton pigments. In: Jeffrey S.W., Mantoura R.F.C. and Wright S.W. (eds), Phytoplankton Pigments in Oceanography. UNESCO, Paris, pp. 449-559.

    Google Scholar 

  • Kauppila T., Moisio T. and Salonen V.P. 2002. A diatom-based inference model for autumn epilimnetic total phosphorus concentration and its application to a presently eutrophic boreal lake. J. Paleolim. 27: 261-273.

    Google Scholar 

  • Kelly J.R. 2001. Nitrogen effects on coastal marine ecosystems. In: Follett R.F. and Hatfield J.L. (eds), Nitrogen in the Environment: Sources, Problems, and Management. Elsevier, Amsterdam, pp. 207-251.

    Google Scholar 

  • Koopmans M.P., Köster J., van Kaam-Peters H.M.E., Kenig F., Schouten S., Hartgers W.A. et al. 1996. Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia. Geochim. Cosmochim. Acta 60: 4467-4496.

    Google Scholar 

  • Lami A., Niessen F., Guilizzoni P., Masaferro J. and Belis C.A. 1994. Palaeolimnological studies of the eutrophication of volcanic Lake Albano (Central Italy). J. Palaeolim. 10: 181-197.

    Google Scholar 

  • Leavitt P.R. 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Palaeolim. 9: 109-127.

    Google Scholar 

  • Leavitt P.R. and Findlay D.L. 1994. Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario. Can. J. Fish. aquat. Sci. 51: 2286-2299.

    Google Scholar 

  • Leavitt P.R., Findlay D.L., Hall R.I. and Smol J.P. 1999. Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification: Evidence from paleolimnology. Limnol. Oceanogr. 44: 757-773.

    Google Scholar 

  • Little J.L. and Smol J.P. 2001. A chironomid-based model for inferring late-summer hypolimnetic oxygen in southeastern Ontario lakes. J. Paleolim. 26: 259-270.

    Google Scholar 

  • Lotter A.F. 2001. The palaeolimnology of Soppensee (Central Switzerland), as evidenced by diatom, pollen, and fossil-pigment analyses. J. Paleolim. 25: 65-79.

    Google Scholar 

  • Madigan M.T. 1988. Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder A.J.B. (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons, New York, pp. 39-111.

    Google Scholar 

  • Mazda Y. 1983. Hamana-ko no Kaiyo Kankyo-Koguchi Chikei Henka niyoru Konai Choseki no Keinen Henka-. [Marine environment of Lake Hamana-Temporal change in tides affected by the change in shape of the inlet channel-]. Engan Kaiyo Kenkyu Note [Bull. Coast. Oceanogr.] 20 (in Japanese): 178-188.

    Google Scholar 

  • Mazda Y. 1999. Hamana-kosui no Fushigi-Naiwan no Shizen to Kaisui no Ugoki-[Wonder of Lake Hamana water-Nature in an enclosed sea and water movement-]. Shizuoka-Shinbun, Shizuoka, 155 pp. (in Japanese).

  • Matsumoto E. 1975. 210Pb geochronology of sediments from Lake Shinji. Geochem. J. 9: 167-172.

    Google Scholar 

  • Matsunaga T., Ueno T., Chandradjith R.L.R., Amano H., Okumura M. and Hashitani H. 1999. Cesium-137 and mercury contamination in lake sediments. Chemosphere 39: 269-283.

    Google Scholar 

  • Matthäus W. 1995. Natural variability and human impacts reflected in long-term changes in the Baltic deep water conditions-A brief review. Deutsche Hydrogr. Z. 47: 47-65.

    Google Scholar 

  • Millie D.F., Paerl H.W. and Hurley J.P. 1993. Microalgal pigment assessments using high-performance liquid chromatography: A synopsis of organismal and ecological applications. Can. J. Fish. aquat. Sci. 50: 2513-2527.

    Google Scholar 

  • Minami H., Kato Y., Wada H. and Okabe S. 1995. Geochemical records during the past 10 kyr from Lake Hamana drill cores. Chikyukagaku [Geochemistry] 29 (in Japanese with English abstract): 85-97.

    Google Scholar 

  • Montesinos E., Guerrero R., Abella C. and Esteve I. 1983. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl. Environ. Microbiol. 46: 1007-1016.

    Google Scholar 

  • Morford J.L. and Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63: 1735-1750.

    Google Scholar 

  • Morse J.W. and Luther G.W. III 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 63: 3373-3378.

    Google Scholar 

  • Mortlock R.A. and Froelich P.N. 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res. 36: 1415-1426.

    Google Scholar 

  • National Astronomical Observatory 1998. Rika Nenpyo [Chronological Scientific Tables]. Maruzen, Tokyo, 667 pp. (in Japanese).

    Google Scholar 

  • Putschew A., Schaeffer P., Schaeffer-Reiss C. and Maxwell J.R. 1998. Carbon isotope characteristics of the diaromatic carotenoid, isorenieratene (intact and sulfide-bound) and a novel isomer in sediments. Org. Geochem. 29: 1849-1856.

    Google Scholar 

  • Quinlan R. and Smol J.P. 2002. Regional assessment of long-term hypolimnetic oxygen changes in Ontario (Canada) shield lakes using subfossil chironomids. J. Paleolim. 27: 249-260.

    Google Scholar 

  • Rabalais N.N., Turner R.E., Wiseman W.J. Jr and Dortch Q. 1998. Consequences of the 1993 Mississippi River flood in the Gulf of Mexico. Regul. Rivers: Res. Mgmt. 14: 161-177.

    Google Scholar 

  • Repeta D.J. 1993. A high resolution historical record of Holocene anoxygenic primary production in the Black Sea. Geochim. Cosmochim. Acta 57: 4337-4342.

    Google Scholar 

  • Repeta D.J. and Simpson D.J. 1991. The distribution and recycling of chlorophyll, bacteriochlorophyll and carotenoids in the Black Sea. Deep-Sea Res. 38: S969-S984.

    Google Scholar 

  • Repeta D.J., Simpson D.J., Jorgensen B.B. and Jannasch H.W. 1989. Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea. Nature 342: 69-72.

    Google Scholar 

  • Repeta D.J. and Gagosian R.B. 1987. Carotenoid diagenesis in recent marine sediments-I. The Peru continental shelf (15° S, 75° W). Geochim. Cosmochim. Acta 51: 1001-1009.

    Google Scholar 

  • Sabater S. and Haworth E.Y. 1995. An assessment of recent trophic changes in Windermere South Basin (England) based on diatom remains and fossil pigments. J. Paleolimnol. 14: 151-163.

    Google Scholar 

  • Sanada Y., Sato F., Kumata H., Takada H., Yamamoto A., Kato Y. et al. 1999. Estimation of sedimentation processes in Tokyo Bay using radionuclides and anthropogenic molecular markers. Chikyukagaku [Geochemistry] 33 (in Japanese with English abstract): 123-138.

    Google Scholar 

  • Sanger J.E. and Gorham E. 1972. Stratigraphy of fossil pigments as a guide to the postglacial history of Kirchner Marsh, Minnesota. Limnol. Oceanogr. 17: 840-854.

    Google Scholar 

  • Schmidt K., Connor A. and Britton G. 1994. Analysis of pigments: Carotenoids and related polyenes. In: Goodfellow M. and O'Donnel A.G. (eds), Chemical Methods in Prokaryotic Systematics. Wiley, Chichester, pp. 403-461.

    Google Scholar 

  • Shizuoka Institute of Environment and Hygiene 1980-1998. Annual Report on Surface and Ground Water Qualities in Shizuoka Prefecture.

  • Sinninghe Damsté J.S., Wakeham S.G., Kohnen M.E.L., Hayes J.M. and de Leeuw J.W. 1993. A 6,000-year sedimentary molecular record of chemocline excursions in the Black Sea. Nature 362: 827-829.

    Google Scholar 

  • Smith K.M. 1975. Appendix: Electronic absorption spectra. In: Smith K.M. (ed.), Porphyrins and Metalloporphyrins. Elsevier, Amsterdam, pp. 871-889.

    Google Scholar 

  • Sohlenius G. and Westman P. 1998. Salinity and redox alternations in the northwestern Baltic proper during the late Holocene. Boreas 27: 101-114.

    Google Scholar 

  • Soma Y., Tanaka A. and Soma M. 1995. Composition and vertical profiles of photosynthetic pigments in the sediment of Lake Kasumigaura. Geochem. J. 29: 107-113.

    Google Scholar 

  • Soma Y., Tanaka A., Soma M. and Kawai T. 2001. 2.8 million years of phytoplankton history in Lake Baikal recorded by the residual photosynthetic pigments in its sediment core. Geochem. J. 35: 377-383.

    Google Scholar 

  • Soma Y., Imaizumi T., Yagi K. and Kasuga S. 1993. Estimation of algal succession in lake water using HPLC analysis of pigments. Can. J. Fish. Aquat. Sci. 50: 1142-1146.

    Google Scholar 

  • Stal L.J., van Gemerden H. and Krumbein W.E. 1984. The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J. Microbiol. Methods 2: 295-306.

    Google Scholar 

  • Swain E.B. 1985. Measurement and interpretation of sedimentary pigments. Freshwat. Biol. 15: 53-75.

    Google Scholar 

  • Takahashi M. and Ichimura S. 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13: 644-655.

    Google Scholar 

  • Takayasu K. 2001. Kisui-iki no Kagaku [Science of brackish water regions]. Tatara shobo, Yonago, 183 pp. (in Japanese).

    Google Scholar 

  • Talbot H.M., Head R.N., Harris R.P. and Maxwell J.R. 1999a. Distribution and stability of steryl chlorin esters in copepod faecal pellets from diatom grazing. Org. Geochem. 30: 1163-1174.

    Google Scholar 

  • Talbot H.M., Head R.N., Harris R.P. and Maxwell J.R. 1999b. Steryl esters of pyropheophorbide b: a sedimentary sink for chlorophyll b. Org. Geochem. 30: 1403-1410.

    Google Scholar 

  • Tyler P.A. and Vyverman W.G. 1995. The microbial market place-trade-offs at the chemocline of meromictic lakes. Prog. Phycol. Res. 11: 325-370.

    Google Scholar 

  • Van Gemerden H. 1980. Survival of Chromatium vinosum at low light intensities. Arch. Microbiol. 125: 115-121.

    Google Scholar 

  • Vandecasteele C. and Block C.B. 1993. Modern Methods for Trace Element Determination. John Wiley & Sons, Chichester, 330 pp.

    Google Scholar 

  • Villanueva J. and Hastings D.W. 2000. A century-scale record of the preservation of chlorophyll and its transformation products in anoxic sediments. Geochim. Cosmochim. Acta 64: 2281-2294.

    Google Scholar 

  • Villanueva J., Grimalt J.O., de Wit R., Keely B.J. and Maxwell J.R. 1994. Sources and transformations of chlorophylls and carotenoids in a monomictic sulphate-rich karstic lake environment. Org. Geochem. 22: 739-757.

    Google Scholar 

  • Wetzel R.G. 2001. Limnology: Lake and River Ecosystems. 3rd edn. Academic Press, San Diego, 1006 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, N., Tani, Y., Nagatani, T. et al. Phototrophic activity and redox condition in Lake Hamana, Japan, indicated by sedimentary photosynthetic pigments and molybdenum over the last ∼250 years. Journal of Paleolimnology 29, 403–422 (2003). https://doi.org/10.1023/A:1024407210928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024407210928

Navigation