Solar Physics

, Volume 214, Issue 2, pp 325–338 | Cite as

Vertical Dynamics of the Energy Release Process in a Simple two-Ribbon Flare

  • Bojan VRŠSNAK
  • Karl-Ludwig Klein
  • Alexander Warmuth
  • Wolfgang Otruba
  • Marina Skender


Observations of the quiescent filament eruption and the spotless two-ribbon flare of 12 September 2000 are presented. A simple flare morphology, large spatial scales, and a suitable viewing angle provide insight into characteristics of the energy release process which is attributed to the reconnection process in the current sheet formed below the eruptive filament. The flare ribbons appeared and started to expand laterally while the filament was still recognizable, enabling simultaneous measurements of the ribbon separation w and the height of the lower edge of the filament, h. The ratio w/h estimated for the expanding portions of ribbons indicates that the width-to-length ratio of the current sheet at the onset of the fast reconnection ranges between \(\frac{1}{18}\) and \(\frac{1}{9}\). The ribbon elements characterized by w/h>\(\frac{1}{6}\) remained stationary. The Nançay radioheliograph data in the decimeter–meter wavelengths show one group of radio bursts ahead of the filament (moving type IV burst) and another group behind the filament. The centroids of the radio sources behind the filament were confined to the region outlined by the lower edge of the filament and the magnetic inversion line, suggestive of emission from the current sheet. Sources were preferably located close to the lower edge of the filament and some appeared close to the magnetic inversion line. Two possible explanations are discussed: one in terms of the fast-mode bow shocks in the reconnection outflow jets, and another in terms of a multiple tearing of the current sheet and subsequent coalescence of plasmoids.


Flare Current Sheet Radio Source Radio Burst Eruptive Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschwanden, M. J.: 2002, Space Sci. Rev. 101, 1.Google Scholar
  2. Aurass, H., Vršnak, B., and Mann, G.: 2002, Astron. Astrophys. 384, 273.Google Scholar
  3. Aurass, H., Vršnak, B., Hofmann, A., and Rużdjak, V.: 1999, Solar Phys. 190, 267.Google Scholar
  4. Biskamp, D.: 1982, Phys. Lett. 87A, 357.Google Scholar
  5. Cargill, P. J., Chen, J., Spicer, D. S., and Zalesak, S. T.: 1995, Geophys. Res. Lett. 22, 647.Google Scholar
  6. Cargill, P. J., Chen, J., Spicer, D. S., and Zalesak, S. T.: 1996, J. Geophys. Res. 101, 4855.Google Scholar
  7. Delaboudinière, J.-P., Artzner, G. E., Brunaud, J. et al.: 1995, Solar Phys. 162, 291.Google Scholar
  8. Dodson, H. W. and Hedeman, E. R.: 1960, Astron. J. 65, 51.Google Scholar
  9. Forbes, T. G.: 1986, Astrophys. J. 305, 553.Google Scholar
  10. Forbes, T. G. and Priest, E. R.: 1983, Solar Phys. 84, 169.Google Scholar
  11. Gekelman, W. and Pfister, H.: 1988, Phys. Fluids, 31, 2017.Google Scholar
  12. Kerdraon, A. and Delouis, J.: 1997, in G. Trottet (ed.), Coronal Physics from Radio and Space Observations, Springer-Verlag, Heidelberg, p. 192.Google Scholar
  13. Klein, K.-L. and Mouradian, Z.: 2002, Astron. Astrophys. 381, 683.Google Scholar
  14. Kliem, B.: 1995, Lecture Notes of Physics 444, 93.Google Scholar
  15. Klimchuk J. A.: 1996, ASP Conf. Series 111, 319.Google Scholar
  16. Lin, J. and Forbes, T. G.: 2000, J. Geophys. Res. 105, 2375.Google Scholar
  17. Magara, T., Mineshige, S., Yokoyama, T., and Shibata, K.: 1996, Astrophys. J. 466, 1054.Google Scholar
  18. Magara, T., Chen, P., Shibata, K., and Yokoyama, T.: 2000, Astrophys. J. 538, L175.Google Scholar
  19. Martens, P. C. H. and Kuin, N. P. M.: 1989, Solar Phys. 122, 263.Google Scholar
  20. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., and Ogawa, Y.: 1994, Nature 371, 495.Google Scholar
  21. McKenzie, D. E.: 2000, Solar Phys. 195, 381.Google Scholar
  22. McKenzie, D. E. and Hudson, H. S.: 1999, Astrophys. J. 519, L93.Google Scholar
  23. Messerotti, M., Otruba, W., Warmuth, A. et al.: 1999, in N. Crosby (ed.), Proc. ESA Workshop on Space Weather, WPP-155; ESA, Noordwijk, p. 321Google Scholar
  24. Somov, B. V. and Kosugi, T.: 1997, Astrophys. J. 485, 859.Google Scholar
  25. Soward, A. M.: 1982, J. Plasma Phys. 28, 415.Google Scholar
  26. Skender, M., Vršnak, B., and Martinis, M.: 2002, Proc. 10th European Solar Phys. Meeting, Prague 9-14 September 2002, ESA SP-506, p. 757.Google Scholar
  27. St. Cyr, O. C., Howard, R. A., Sheeley, N. R. et al.: 1999, J. Geophys. Res. 104, 12493.Google Scholar
  28. Švestka, Z.: 1976, Solar Flares, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  29. Tajima, T., Sakai, J., Nakajima, H., Kosugi, T., Brunel, F., and Kundu, M. R.: 1987, Astrophys. J. 321, 1031.Google Scholar
  30. Tsuneta, S.: 1995, Publ. Astron. Soc. Japan 47, 691.Google Scholar
  31. Tsuneta, S.: 1996, Astrophys. J. 456, 840.Google Scholar
  32. Tsuneta, S. and Naito, T.: 1998, Astrophys. J. 495, L67.Google Scholar
  33. Tsuneta, S., Acton, L., Bruner, M. et al.: 1991, Solar Phys. 136, 37.Google Scholar
  34. Uchida, Y., Wheatland, M. S., Haga, R., Yoshitake, I., and Melrose, D.: 2001, Solar Phys. 202, 117.Google Scholar
  35. Ugai, M.: 1987a, Geophys. Res. Lett. 14, 103.Google Scholar
  36. Ugai, M.: 1987b, Phys. Fluids 30, 2163.Google Scholar
  37. Vršnak, B.: 1989, Solar Phys. 120, 79.Google Scholar
  38. Vršnak, B.: 1992, Ann. Geophys. 10, 344.Google Scholar
  39. Vršnak, B.: 2001, J. Geophys. Res. 106, 25249.Google Scholar
  40. Vršnak, B.: 2003, Lecture Notes of Physics 612, 28.Google Scholar
  41. Warmuth, A., Vršnak, B., Aurass, H., and Hanslmeier, A.: 2001, Astrophys. J. 560, L105.Google Scholar
  42. Yokoyama, T., Akita, K., Morimoto, T., Inoue, K., and Newmark, J.: 2001, Astrophys. J. 546, L69.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Bojan VRŠSNAK
    • 1
  • Karl-Ludwig Klein
    • 2
  • Alexander Warmuth
    • 3
  • Wolfgang Otruba
    • 4
  • Marina Skender
    • 5
  1. 1.Hvar Observatory, Faculty of GeodesyZagrebCroatia
  2. 2.Observatoire de Paris, Section de Meudon, LESIA, CNRS-FRE 2461MeudonFrance
  3. 3.Astrophysikalisches Institut PotsdamPotsdamGermany
  4. 4.Kanzelhöhe ObservatoryTreffenAustria
  5. 5.Rudjer Bošković InstituteZagrebCroatia

Personalised recommendations