Advertisement

Foundations of Physics Letters

, Volume 16, Issue 1, pp 83–90 | Cite as

Electrodynamics in the Zero-Point Field: On the Equilibrium Spectral Energy Distribution and the Origin of Inertial Mass

  • M. Ibison
Article

Abstract

Attempts at an electromagnetic explanation of the inertial mass of charged particles have recently been revived within the framework of Stochastic Electrodynamics, characterized by the adoption of a classical version of the electromagnetic zero-point field (ZPF). Recent claims of progress in this area have to some extent received support from related claims that the classical equilibrium spectrum of charged matter is that of the classically conceived ZPF. The purpose of this note is to suggest that some strong qualifications should accompany these claims. It is pointed out that a classical massless charge cannot acquire mass from nothing as a result of immersion in any EM field, and therefore that the ZPF alone cannot provide a full explanation of inertial mass. Of greater concern, it is observed that the peculiar circumstances under which classical matter is in equilibrium with the ZPF do not concur with observation.

ZPF SED inertia mass classical equilibrium spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. H. Boyer, “Classical statistical thermodynamics and electromagnetic zero-point radiation,” Phys. Rev. 180, 19 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    T. H. Boyer, “Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation,” Phys. Rev. A 7, 1832 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    C. Itzykson and J.-B. Zuber, Quantum Field Theory, 1st edn. (McGraw-Hill, New York, 1985).MATHGoogle Scholar
  4. 4.
    T. H. Boyer, Chap. 5 in Foundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).Google Scholar
  5. 5.
    M. Ibison and B. Haisch, “Quantum and classical statistics of the electromagnetic zero-point field,” Phys. Rev. A 54, 2737 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    D. C. Cole, “Entropy and other thermodynamic properties of classical electromagnetic thermal radiation,” Phys. Rev. A 42, 7006 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    D. C. Cole, “Derivation of the classical electromagnetic zero-point radiation spectrum via a classical thermodynamic operation involving van der Waals forces,” Phys. Rev. A 42, 1847 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    T. H. Boyer, “Derivation of the blackbody radiation spectrum without quantum assumptions,” Phys. Rev. 182, 1374 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    T. H. Boyer, “General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems,” Phys. Rev. D 11, 809 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    T. H. Boyer, “Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation,” Phys. Rev. D 11, 790 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    T. H. Boyer, Chap. 5 in Foundations of Radiation Theory and Quantum Electrodynamics, 1st edn., A. O. Barut, ed. (Plenum, New York, 1980).Google Scholar
  12. 12.
    T. H. Boyer, “The classical vacuum,” Sci. Am. 253, 56 (1985).CrossRefGoogle Scholar
  13. 13.
    L. de la Peña and A. M. Cetto, The Quantum Dice. An Introduction to Stochastic Electrodynamics (Kluwer Academic, Dordrecht, 1996).Google Scholar
  14. 14.
    W. Nernst, Verh. Dtsch. Phys. Ges 18, 83 (1916).Google Scholar
  15. 15.
    A. Rueda and B. Haisch, “Contribution to inertial mass by reaction of the vacuum to accelerated motion,” Found. Phys. 28, 1057 (1998).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    A. Rueda and B. Haisch, “Inertia as reaction of the vacuum to accelerated motion,” Phys. Lett. A 240, 115 (1998).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A. Rueda and B. Haisch, in Causality and Locality in Modern Physics, G. Hunter, S. Jeffers, and J. P. Vigier, eds. (Kluwer Academic, Dordrecht, 1998).Google Scholar
  18. 18.
    P. Braffort, M. Spighel, and C. Tzara, C. R. Acad. Sc. (Paris) 239, 157 (1954).Google Scholar
  19. 19.
    N. S. Kalitzin, JETP 25, 407 (1953).Google Scholar
  20. 20.
    T. W. Marshall, “Random electrodynamics,” Proc. R. Soc. Lond. A 276, 475 (1963).ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    P. W. Milonni, The Quantum Vacuum (Academic, San Diego, 1993).Google Scholar
  22. 22.
    P. W. Milonni, “Why spontaneous emission?” Am. J. Phys. 52, 340 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    P. W. Milonni, “Different ways of looking at the electromagnetic vacuum,” Physica Scripta T 21, 102 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    M. Ibison, “Massless classical electrodynamics,” e-print physics/0106046.Google Scholar
  25. 25.
    B. Haisch, A. Rueda, and Y. Dobyns, “Inertial mass and the quantum vacuum fields,” Ann. Phys. (Leipzig) 10, 393 (2001).ADSCrossRefMATHGoogle Scholar
  26. 26.
    B. Haisch, A. Rueda, and H. E. Puthoff, “Inertia as a zero-point-field Lorentz force,” Phys. Rev. A 49, 678 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    J. H. van Vleck and D. L. Huber, Rev. Mod. Phys. 49, 939 (1927).ADSCrossRefGoogle Scholar
  28. 28.
    T. H. Boyer, “Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator,” Phys. Rev. D 13, 2832 (1976).ADSCrossRefGoogle Scholar
  29. 29.
    L. Pesquera and P. Claverie, “The quartic anharmonic oscillator in stochastic electrodynamics,” J. Math. Phys. 23, 1315 (1982).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    R. Blanco, L. Pesquera, and E. Santos, “Equilibrium between radiation and matter for classical relativistic multiperiodic systems. I. Derivation of Maxwell-Boltzmann distribution from Rayleigh-Jeans spectrum,” Phys. Rev. D 27, 1254 (1983).ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Blanco, L. Pesquera, and E. Santos, “Equilibrum between radiation and matter for classical relativistic multiperiodic systems. II. Study of radiative equilibrium with the Rayleigh-Jeans spectrum,” Phys. Rev. D 29, 2240 (1984).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R. Blanco and L. Pesquera, “Analysis of the compatibility between the Maxwell-Boltzmann distribution and the Rayleigh-Jeans spectrum for classical systems,” Phys. Rev. D 33, 421 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    H. E. Puthoff, “Source of vacuum electromagnetic zero-point energy,” Phys. Rev. A 40 4857 (1989).ADSCrossRefGoogle Scholar
  34. 34.
    H. E. Puthoff, “Reply to ‘Comment on “Source of vacuum electromagnetic zero-point energy”’,” Phys. Rev. A 44, 3385 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • M. Ibison
    • 1
  1. 1.Institute for Advanced Studies at AustinAustin

Personalised recommendations