Advertisement

Ukrainian Mathematical Journal

, Volume 54, Issue 12, pp 2038–2046 | Cite as

Some Local Contour-Solid Theorems for Finely Holomorphic Functions

  • A. A. Sarana
Article
  • 15 Downloads

Abstract

We prove some local contour-solid theorems for finely holomorphic functions defined on sets of the complex plane that are finely open with nonpolar complements.

Keywords

Complex Plane Holomorphic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. M. Tamrazov and A. A. Sarana, “Contour-solid properties of finely hypoharmonic functions,” Ukr. Mat. Zh., 49, No. 8, 1114–1125 (1997).Google Scholar
  2. 2.
    P. M. Tamrazov and A. A. Sarana, “Contour-solid properties of finely holomorphic functions,” Ukr. Mat. Zh., 50, No. 5, 712–723 (1998).Google Scholar
  3. 3.
    P. M. Tamrazov, “Strengthened contour-solid results for subharmonic functions,” Ukr. Mat. Zh., 40, No. 2, 210–219 (1988).Google Scholar
  4. 4.
    P. M. Tamrazov, “Contour-solid results for holomorphic functions,” Izv. Akad. Nauk SSSR, 50, No. 4, 835–848 (1986).Google Scholar
  5. 5.
    T. G. Aliev and P. M. Tamrazov, Meromorphic Functions in Contour-Solid Problem with Regard to Zeros and Multivalence [in Russian], Preprint No. 85.46, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1985).Google Scholar
  6. 6.
    B. Fuglede, “Finely harmonic functions,” Lect. Notes Math., No. 289, Springer, Berlin (1972).Google Scholar
  7. 7.
    B. Fuglede, “Sur la fonction de Green pour un domaine fin,” Ann. Inst. Fourier., 25, No. 3–4, 201–206 (1975).Google Scholar
  8. 8.
    B. Fuglede, “Finely holomorphic functions. A survey,” Rev. Roum. Math. Pures Appl., 33, 283–295 (1988).Google Scholar
  9. 9.
    B. Fuglede, “Finely harmonic mappings and finely holomorphic functions,” Ann. Acad. Sci. Fenn. Ser. A. I. Math., 2, 113–127 (1976).Google Scholar
  10. 10.
    B. Fuglede, “Value distribution of harmonic and finely harmonic morphisms and applications in complex analysis,” Ann. Acad. Sci. Fenn. Ser. A. I. Math., 11, 111–136 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. A. Sarana
    • 1
  1. 1.Zhitomir Pedagogic InstituteZhitomir

Personalised recommendations