Skip to main content
Log in

Unusual cavity shapes resulting from multistep mass transport controlled dissolution: Numerical simulation and experimental investigation with titanium using oxide film laser lithography

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The shape evolution of cavities produced by multistep electrochemical micromachining is investigated both theoretically and experimentally. A boundary element code is used for 2D simulation of the shape evolution as a function of applied charge. A two-step process is simulated by assuming that metal dissolves from a small area at the bottom of a hemicylindrical groove protected by an insulating film. Similarly, the shape evolution in a three-step process is numerically simulated. The simulation shows that multistep isotropic etching can yield buried cavities with a narrow opening as well as large aspect ratio cavities. It also permits one to achieve aspect ratios larger than one. Electrochemical micromachining experiments were carried out with titanium using oxide film laser lithography (OFLL) for patterning the surface. Metal dissolution from the irradiated line features on the oxide was carried out in an electropolishing electrolyte starting from a flat surface or from preformed grooves. The resulting cavity shapes observed with a microscope corresponded well to the theoretical predictions. The experiments thus confirmed that isotropic etching involving two or three subsequent anodization–irradiation–dissolution steps can yield high aspect ratio cavities and partly occluded cavities. Possible implications of the present results for the shape evolution of corrosion pits are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Rosset and D. Landolt, Precision Eng. 11 (1989) 79.

    Google Scholar 

  2. A.C. West, C. Madore, M. Matlosz and D. Landolt, J. Electrochem. Soc. 139 (1992) 499.

    Google Scholar 

  3. M. Datta and L.T. Romankiw, J. Electrochem. Soc. 136 (1989) 285C.

    Google Scholar 

  4. C. Madore and D. Landolt, J. Micromech. Microeng. 7 (1997) 270.

    Google Scholar 

  5. M. Datta and D. Harris, Electrochim. Acta 42 (1997) 3007.

    Google Scholar 

  6. C. Madore, O. Piotrowski and D. Landolt, J. Electrochem. Soc. 146 (1999) 2526.

    Google Scholar 

  7. M. Datta and D. Landolt, Electrochim. Acta 45 (2000) 2535.

    Google Scholar 

  8. Y. Ferri, O. Pietrowski, P.F. Chauvy, C. Madore and D. Landolt, J. Micromech. Microeng. 11 (2001) 522.

    Google Scholar 

  9. R.V. Shenoy and M. Datta, J. Electrochem. Soc. 143 (1996) 544.

    Google Scholar 

  10. R.V. Shenoy, M. Datta and L.T. Romankiw, J. Electrochem. Soc. 143 (1996) 2305.

    Google Scholar 

  11. O. Piotrowski, C. Madore and D. Landolt, J. Electrochem. Soc. 145 (1998) 2362.

    Google Scholar 

  12. P-F. Chauvy, C. Madore and D. Landolt, Electrochem. Solid State Lett. 2 (1999) 123.

    Google Scholar 

  13. P-F. Chauvy, P. Hoffmann and D. Landolt, Electrochem. Solid State Lett. 4 (2001) C31.

    Google Scholar 

  14. P-F. Chauvy, P. Hoffmann and D. Landolt, Appl. Surf. Sci., submitted.

  15. K.J. Vetter and H.H. Strehblow, in R.W. Staehle, B.F. Brown, J. Kruger and A. Agarwal (Eds), ‘Localized Corrosion’, NACE-3, NACE, Houston, TX (1974), p. 240.

    Google Scholar 

  16. H.H. Strehblow and J. Wenners, Z. Phys. Chem. (N. F.) 98 (1975) 199.

    Google Scholar 

  17. H.C. Kuo and D. Landolt, Corros. Sci. 16 (1976) 915.

    Google Scholar 

  18. F. Hunkeler, A. Krolikowski and H. Böhni, Electrochim. Acta 32 (1987) 615.

    Google Scholar 

  19. R.C. Alkire and K.P. Wong, Corros. Sci. 28 (1988) 411.

    Google Scholar 

  20. P. Ernst, N.J. Laycock, M.H. Moayed and R.C. Newman, Corros. Sci. 39 (1997) 1133.

    Google Scholar 

  21. M. Wang, H.W. Pickering and Y. Xu, J. Electrochem. Soc. 142 (1995) 2986.

    Google Scholar 

  22. P. Ernst and R.C. Newman, Corros. Sci. 44 (2002) 927.

    Google Scholar 

  23. P. Ernst and R.C. Newman, Corros. Sci. 44 (2002) 943.

    Google Scholar 

  24. N.J. Laycock, S.P. White, J.S. Noh, P.T. Wilson and R.C. Newman, J. Electrochem. Soc. 145 (1998) 1101.

    Google Scholar 

  25. N.J. Laycock and S.P. White, J. Electrochem. Soc. 148 (2001) B264.

    Google Scholar 

  26. P-F. Chauvy, ‘Electrochemical Micromachining of Titanium using Oxide Film Laser Lithography’, PhD. thesis no. 2570, EPFL, Lausanne (2002).

  27. P-F. Chauvy, P. Hoffmann and D. Landolt, Appl. Surf. Sci. submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Landolt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvy, PF., Landolt, D. Unusual cavity shapes resulting from multistep mass transport controlled dissolution: Numerical simulation and experimental investigation with titanium using oxide film laser lithography. Journal of Applied Electrochemistry 33, 135–142 (2003). https://doi.org/10.1023/A:1024034404509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024034404509

Navigation